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ABSTRACT
An algorithm for estimating the fundamental frequency of a single-
pitch audio signal is described, for application to audio-to-MIDI
conversion. In order to minimize latency, this method is based on
the ESPRIT algorithm, together with a statistical model for partials
frequencies. It is tested on real guitar recordings and compared to
the YIN estimator. We show that, in this particular context, both
methods exhibit a similar accuracy but the periodicity measure,
used for note segmentation, is much more stable with the ESPRIT-
based algorithm. This allows to significantly reduce ghost notes.
This method is also able to get very close to the theoretical mini-
mum latency, i.e. the fundamental period of the lowest observable
pitch. Furthermore, it appears that fast implementations can reach
a reasonable complexity and could be compatible with real-time,
although this is not tested is this study.

1. INTRODUCTION

MIDI (Musical Interface for Digital Instruments) is the most widely
used standard for connecting digital instruments. It specifies both
the hardware interface and the data transmission protocol. It allows
for instance to encode a melody as a collection of notes (note start-
ing points, durations, pitches...) and to control a compatible syn-
thesizer with an external interface, for instance a digital keyboard
or a "wind controller" which mimics a wind instrument. However,
for some instruments like guitars, designing an appropriate digital
controller is difficult. Then, the original acoustic instrument can
be used as a MIDI controller by adding an audio-to-MIDI con-
verter. Such a device basically consists of a microphone that cap-
tures the acoustic signal produced by the instrument and a pitch-
tracker which estimates the evolution of pitch during time. For gui-
tars, one usually uses an under-saddle pickup for each string, con-
nected to a series of monophonic pitch trackers, one for each string
[1]. Such MIDI converters have been marketed for a few decades,
but suffer from many flaws: latency, ghost notes, octave errors...
The performance constantly improve, but latency still remains an
issue: With an up-to-date Roland GR55 (built-in audio-to-MIDI
converter and synthesizer) connected to a compatible acoustic gui-
tar (Godin Multiac), we measured an average latency of 50 ms
between the output of the under-saddle pickups and the audio out-
put of the synthesizer (constant over the guitar frequency-range).
Thus, playing a guitar synth is not easy and requires to develop
specific skills.

In this study, we focus on the issue of latency for monophonic
pitch tracking. We assume that pitch estimation is similar to fun-
damental frequency detection (noted f0), and that the observed
signal is harmonic. It appears that latency has several sources
that add up. First, the "algorithmic delay", which is inherent to

the pitch-detection algorithm. It corresponds to the length of the
time-interval that is required for the algorithm to give an accurate
estimation. This delay has a fundamental lower bound which re-
lated to the minimum f0 value than can be detected. For a "Span-
ish" guitar1, the minimum f0 value is approximately 80 Hz, which
corresponds to a minimum delay of 12.5 ms. Then, the "com-
putational delay", which is the time required by the digital signal
processor (DSP) to perform the pitch estimation. This delay can
be reduced by increasing the speed of the DSP.

The issue of pitch detection is a classical problem and many
algorithms have been proposed in the past decades. These meth-
ods can be roughly classified in two categories: time-domain and
frequency-domain. Time-domain methods usually consist of find-
ing a maximum of the auto-correlation function (or another simi-
lar function), while frequency-domain methods rely on a spectral
analysis stage followed by a peak-picking stage. It was proved
that time-domain methods are usually more efficient for real-time
estimation of single-pitch [2]. Especially, the YIN algorithm, pro-
posed by de Cheveigné et al. [3], can be considered as a reference
f0 estimator. It is based on the observation of a "cumulative mean
normalized difference function", which is characterized by dips at
the time-lags corresponding to the periodicity. This method is ac-
curate, has a moderate complexity and a relatively low algorithmic
delay. In [2], the delay of the full method was estimated around
30 ms for a "Spanish" guitar. However, this value is still approxi-
mately twice the theoretical minimum delay.

In this paper, we consider a new approach to reduce the al-
gorithmic delay. Most f0 estimators are non-parametric methods
in the sense that they do not use a priori information about the
signal. In contrast, parametric methods, which rely on a signal
model, are known to be more precise when the observed signal
correctly fits the model, but usually fail in the opposite case. For
that reason, non-parametric methods are often considered more ro-
bust. However, audio signals coming from an under-saddle guitar
pickup usually produce a quasi-harmonic sound with a very low
noise, which justifies the use of a parametric method based on a si-
nusoidal signal model. In this study, we choose the Exponentially
Damped Sinusoidal (EDS) model. The model parameters are esti-
mated with a method derived from the ESPRIT algorithm [4]. This
phase is similar to a spectral analysis and a peak-picking stage. To
fulfill the pitch estimation, we use a spectral f0 estimator inspired
by the one proposed by Doval et al. [5]. Algorithms derived from
ESPRIT are known for their good frequency resolution, but also
have the reputation to require high computation time. However,
fast algorithms have been proposed in the last decade [6, Chapter

1A "Spanish" guitar means a 6 string instrument tuned to the standard
scale E-A-D-G-B-E. Thus, the lowest note is E2, corresponding to a fun-
damental frequency of 82.41 Hz.
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V] which exhibit a complexity not much higher than a FFT. Thus,
this method is theoretically suitable for real-time implementation,
although this is not tested is this study.

This paper is organized as follows: In a first part, we consider
more precisely the issue of algorithmic delay in a f0 estimator. In
a second part, we describe the proposed method. In a third part, we
give results obtained from real guitar sounds both for our algorithm
and for the YIN estimator, concerning pitch accuracy and delay. In
the last part, we draw conclusions.

2. THE ISSUE OF ALGORITHMIC DELAY

Most f0 estimators are frame-based methods. An input buffer of
N samples is used, and the estimation of f0 is made every a sam-
ples (a 2 N r {0}). In other words, a sliding analysis window
of N samples is used, with a hop-size a. The f0 estimator should
ideally be associated to the estimation of a "periodicity measure",
i.e. whether the signal is pitched or not. A common periodicity
measure is obtained by computing the energy of the periodic com-
ponents in the signal, called "voiced" components in the case of a
speech signal [7]. Such a periodicity measure influences the ac-
curacy of the note segmentation process: A simple way to detect
notes is to threshold the periodicity measure.

It is often believed that the algorithmic delay is equal to the
window length, but this more complex. As exemplified on figure
1, the algorithmic delay corresponds to the time-interval between
the beginning of a note and the last sample of the first window
for which f0 estimate is accurate (and eventually the periodicity
measure is higher than the threshold). Sometimes, the algorithm
returns the accurate f0 even if the pitched signal does not "fill"
the window (plotted case). Then, the delay can be shorter that N
samples. Sometimes, the estimator takes some time to return the
accurate f0 and the delay can be longer that N samples.

Figure 1: Measurement of the algorithmic delay.

As explained in [3], performing a correct f0 estimation re-
quires that the window length is no shorter than the largest ex-
pected period. But, according to the well known rule of thumb, a
correct estimation requires enough signal to cover twice the largest
period. Thus, the minimum delay is equal to 1/fmin

0 , fmin
0 being

the lowest f0 value than can be detected. As explained previously,
this corresponds to approximately 12.5 ms for a "Spanish" gui-
tar. As a consequence, the window length N must be higher that
fs/f

min
0 where fs is the sampling frequency. But practically, we

expect a minimum delay of 25 ms.

3. THE PROPOSED METHOD

This method is divided in two stages: in the first one, the most sig-
nificant sinusoidal components are extracted according to a signal
model. Then, in the second stage, the most probable fundamental
frequency is estimated using a statistical model.

3.1. Sinusoidal modeling

In this part, we describe the signal model and the estimation algo-
rithm. Both have been extensively discussed in the literature. We
choose to reproduce this description from a previous work [8] in
order to render the paper self-contained.

In the EDS model, the signal to be analyzed is written:

x[n] = s[n] + w[n], (1)

where the deterministic part s[n] is a sum of K damped sinusoids:

s[n] =

K�1X

k=0

↵kz
n
k . (2)

Complex amplitudes are defined as ↵k = ak ei�k (containing ini-
tial amplitude ak and phase �k), and poles are defined as zk =

e�dk+2i⇡⌫k (containing damping dk and normalized frequency
⌫k). The stochastic part w[n] is a gaussian white noise.

The estimation algorithm consists in finding the best values of
K, ↵k and zk for a given signal in the least square sense. In this
study, an estimation algorithm proposed by Badeau et al. [4] is
used, which is derived from the ESPRIT algorithm. The principle
consists of performing an SVD on an estimate of the signal cor-
relation matrix. The eigenvectors corresponding to the K highest
eigenvalues correspond to the so-called signal space, while the re-
maining vectors correspond to the so-called noise space. The shift
invariance property of the signal space allows a simple solution for
the optimal poles values zk. Then, the amplitudes ↵k can be re-
covered by solving a standard least square problem. The algorithm
can be described as follows:

We define the signal vector:

x =

⇥
x[0] x[1] . . . x[N � 1]

⇤T
, (3)

where N is the length of the analysis window. We assume that N
is even. The Hankel signal matrix is defined as:

X =

2

6664

x[0] x[1] . . . x[Q� 1]

x[1] x[2] . . . x[Q]

...
...

...
x[R� 1] x[R] . . . x[N � 1],

3

7775
, (4)

where Q,R > K and Q+R� 1 = N . Q ⇡ R was proved to be
an efficient solution, thus we choose Q = N/2 and R = N/2+1.
We also define the amplitude vector:

↵ =

⇥
↵0 ↵1 . . . ↵K�1

⇤T
, (5)

and the Vandermonde matrix of the poles:

Z

N
=

2

6664

1 1 . . . 1

z0 z1 . . . zK�1

...
...

...
...

zN�1
0 zN�1

1 . . . zN�1
K�1

3

7775
. (6)
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Performing a SVD on X leads to:

X = [U1U2]


⌃1 0

0 ⌃2

� 
V1

V2

�
, (7)

where ⌃1 and ⌃2 are diagonal matrices containing respectively
the K largest singular values and the remaining singular values.
[U1U2] and [V1V2] are respectively the corresponding left and
right singular vectors. The shift-invariance property of the signal
space yields to:

U

#
1�1 = U

"
1 , V

#
1 �2 = V

"
1 , (8)

where the poles are eigenvalues of matrix �1 and �2. (.)" and
(.)# respectively stand for the operators that discard the first line
and the last line of a matrix. Here, we estimate:

�1 = (U

#
1 )

†
U

"
1 , (9)

where (.)† denotes the pseudoinverse operator. The estimates of
zk are obtained by diagonalization of �1. The associated Vander-
monde matrix Z

N is computed. Finally, the estimates of ampli-
tudes with respect to the least square criterion are obtained by:

↵ = (Z

N
)

†
x. (10)

Badeau et al. also proposed a criterion (ESTER) which mea-
sures the adequacy between the signal and the model [9]. It is
based on the fact that equations (8) are strictly verified only when
the signal exactly follows the EDS model defined by equation (2)
without noise. In the general case, a distance between U

"
1 and

U

#
1�1 can be used to measure the model error. Is was observed

that the original ESTER criterion naturally favors low values for
the model order K. In order to minimize this effect, we propose a
modified version of this criterion:

J =

(K � 1)

2

kU"
1 �U

#
1�1k2

. (11)

The numerator simply performs a normalization of the denomina-
tor by the size of the matrix inside the norm. A high value for J
means a good match between the signal and the model. This crite-
rion can be used to automatically determine the best model order
K, or in our case, to derive a periodicity measure.

3.2. Fundamental frequency estimation

It is assumed that each damped sinusoid in the EDS decomposi-
tion corresponds to a partial. Its frequency is related to the pole
estimate by fk = fs⌫k =

fs
2⇡ arg(zk). Doval et al. proposed a

statistical method that allows estimating the most probable funda-
mental frequency of a harmonic signal given a set of partials [5].
The main idea is to compute a likelihood function of the funda-
mental frequency based on a probabilistic model of the observed
partials. The best estimate for the fundamental frequency is the
global maximum of this function. In the original method, the sta-
tistical model is elaborated and has many parameters. Estimating
these parameters requires a learning database of recorded notes.
Furthermore, the computation of the likelihood function can be
time-consuming.

With our application, a low-complexity algorithm is desirable.
We also wish that our method does not depend on a learning data-
base. Thus, we modify the model in order to reduce the complexity

Figure 2: Classification of partials for a given f0.

and to minimize the number of parameters. In particular, the dis-
tribution of energy between partials is not modeled. This probably
degrades the efficiency of the f0 estimation compared to the orig-
inal method, but it happens to be sufficient for this application.

For a given value of f0, we define a set of frequency intervals
Im centered on mf0:

Im =

✓
m� 1

2

◆
f0,

✓
m+

1

2

◆
f0

�
, m 2 Nr {0}, (12)

which define a partition of the frequency scale. The partials are
dispatched in these intervals according to their frequency fk. Some
intervals can contain several partials, and some others can be empty.
In each non-empty interval, we define the most probable "har-
monic partial" as the one which frequency is closer to mf0, noted
fh
m. The others are called "supplementary partials" (see figure 2).

The likelihood function is written as:

L(f0) =

"
Y

m2M

g

✓
fh
m

f0
�m

◆#
PS(f0) PE(f0), (13)

where M is the set of indices m corresponding to non-empty in-
tervals Im. The first term is the a posteriori probability to observe
the set of harmonic partials. The second and third terms, PS(f0)
and PE(f0), are respectively the a posteriori probability to ob-
serve the set of supplementary partials and empty intervals. g is a
probability function that models the frequencies of harmonic par-
tials, which is assumed to be gaussian:

g

✓
fh
m

f0
�m

◆
/ e

� 1
�2

✓
fh
m
f0

�m

◆2

. (14)

�2 represents the variance of the reduced frequencies fh
m/f0 around

the mean value m. PS(f0) and PE(f0) are estimated by:

Ps(f0) = 1�
✓
NS

K

◆↵S

, PE(f0) = 1�
✓
NE

M

◆↵E

, (15)

where NS is the number of supplementary partials, NE the num-
ber of empty intervals and M the total number of intervals. ↵S

and ↵E are constants that allow adjusting the influence of NS and
NE on the likelihood function.

Thus, when the frequencies of the harmonic-partials are close
to mf0, the likelihood increases. When the number of supplemen-
tary partials or empty intervals increases, the likelihood decreases.
This method naturally avoids octave errors: A lower (resp. higher)
octave generates supplementary partials (resp. empty intervals),
which lowers the probability PS(f0) (resp. PE(f0)) and finally
lowers the likelihood. However, this requires a fine tuning on ↵S

and ↵E .
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Figure 3: Outputs of the estimation process for a short sequence of notes, ESPRIT (left column) and YIN (right column). First row: Signal
waveform. Second row: MIDI note returned by the algorithm. Third row: Periodicity measure (blue) and threshold (red), log scale. Fourth
row: Final MIDI note after thresholding the periodicity measure.

3.3. Implementation details

The EDS estimation algorithm is applied on analysis segments
without weighting function (also called "rectangular analysis win-
dow" in the literature). The model order K can be set to a constant,
or one can define maximum and minimum values and use the ES-
TER criterion to select the optimal order. From our experiments
on isolated guitar notes, it appears that K = 6 is good choice for
a constant. Otherwise, K may vary between 4 and 12. Choosing a
constant K saves execution time but this is sub-optimal. More pre-
cisely, bass notes usually have more harmonics than treble notes.
Observing a larger set of harmonics on bass notes is desirable be-
cause these notes are more difficult to detect (there are fewer fun-
damental periods in the analysis window), and a larger set of har-
monics gives a more robust estimation of f0.

A periodicity measure ideally measures the energy of the peri-
odic component in the signal. The criterion J defined in equation
(11) is simply a ratio (without dimension) that measures the signal-
to-model adequation. Thus, we derive our periodicity measure by
multiplying J by the energy of the signal in the analysis window.

The estimation of f0 implies computing the likelihood for all
possible values of f0. This can be accelerated by testing only dis-
crete values, for instance on the tempered scale. If a finer esti-
mation is required, a refinement stage can be added [5]. We set
� = 1/8, ↵S = 8 and ↵E = 4. This set of parameters appears to
give a robust estimation over all the guitar frequency range. How-
ever, it is possible to choose a different set of parameters for each
f0 which could improve the detection accuracy.

Concerning complexity, ESPRIT is obviously the most crit-
ical part. A non-optimized version of ESPRIT has a complex-
ity in O(N3

) which is hardly suitable for real-time implementa-
tion. But a fast implementation of ESPRIT [6] has a complex-

ity in O(KN(K + log(N))). When K is small, this reduces to
O(KN log(N)), which is not much more than a FFT. When the
overlap between adjacent analysis windows is high, using adaptive
algorithms allow to reduce again the complexity [6].

4. RESULTS AND DISCUSSION

In this section, we report test results for our algorithm and the
YIN estimator on the same audio excerpts. The signal is the out-
put of an under-saddle piezo-pickup on a solid-body acoustic gui-
tar. The original signal is sampled at 44.1 kHz, downsampled at
11.025 kHz to reduce complexity. This appears to be sufficient for
estimating the highest pitch on a Spanish guitar (between 930 and
1200 Hz). The implementation is in Matlab, and thus the estima-
tion is an offline process. According to the results given in section
2, the minimum buffer length is N = 138 for fmin

0 = 80 Hz.
We choose for both methods a hop-size of a = 8 samples, which
corresponds to 0.72 ms.

For the YIN estimator, the author’s implementation [10] is
used. For the proposed method, the implementation of the ESPRIT-
based estimator relies on the DESAM Toolbox [11], which is non-
optimized. The minimum f0 is set to 80 Hz for both methods.
Buffer length was adjusted so that a correct estimation of f0 is
obtained for the whole guitar range. N = 300 is the minimal
value for the YIN estimator, and N = 260 is the minimal value
for the ESPRIT-based method. The YIN estimator gives a con-
tinuous frequency estimation that we round to the tempered scale.
The new method is implemented only for discrete f0 values cor-
responding to the tempered scale. Frequencies are then converted
into MIDI note index for both methods. The periodicity measure
in the case of YIN is the inverse of the so-called "aperiodicity mea-
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Figure 4: Outputs of the estimation process for E2 note, ESPRIT (left column) and YIN (right column). First row: Signal waveform. Second
row: MIDI note returned by the algorithm (blue) and theoretical value (red). Third row: Periodicity measure (blue) and threshold (red),
log scale. Fourth row: Final MIDI note after thresholding the periodicity measure (blue) and reference value (red). Time origin is manually
aligned with the onset.

sure" returned by the algorithm [10]. For both methods, the note
segmentation is obtained by thresholding the periodicity measure.
The thresholds were adjusted empirically in order to get accurate
segmentation on several test recordings. The threshold was set to
100 for ESPRIT and to 60 for YIN. Although, in a finely tuned
application, a different threshold could be set for each string.

On figure 3, we plot the results for both algorithms on a se-
quence of high-pitched notes played on the same string, with a
pitch-bend during the third note. The estimated MIDI note is accu-
rate and stable for both methods when the signal is stationary. As
expected, both return insignificant pitch values between the notes.
The case of the periodicity measure is more contrasted: With the
YIN algorithm, the periodicity evolves sharply in time, but is not
very stable. One can not define a threshold on the periodicity mea-
sure that avoids ghost notes. With ESPRIT, the periodicity is more
stable and an accurate thresholding can avoid most ghost notes, but
it evolves more slowly in time.

On figure 4, we plot the results for a low-pitch single note (E2),
which is the lowest note on a Spanish guitar, and zoom around the
onset. With both methods, the estimated MIDI note is accurate
and stable after a transition phase. As regards the algorithmic de-
lay (we do not consider the computational delay in this section),
the ESPRIT-based method returns the correct raw MIDI note af-
ter 12 ms, which is approximately one period of the signal (i.e.
the theoretical minimum value), whereas YIN returns the correct
raw MIDI note after 20 ms. However, one must take into account
the periodicity measure to evaluate the actual delay. Both methods
exhibit a raising front on the periodicity which allows a precise
thresholding, approximately 12 ms after the onset for the ESPRIT-
based method and 35 ms after the onset for the YIN algorithm.
This is close to the value obtained by Knesebeck et al. in [2].

On figure 5, the results for a high-pitch single note (E4) are
plotted. As expected, the results are globally similar to the previ-
ous case because the analysis parameters (especially the window
size) did not change. However, one can see that the periodicity
measure is less sharp with ESPRIT: there is a shelf between 12 and
24 ms that could extend the delay, or even generate ghost notes, de-
pending on the threshold value. This can be explained by the fact
that the signal exhibits a pseudo-periodicity before the onset that
might come from the interaction between the string and the pick.
The periodicity onset is sharper with YIN.

5. CONCLUSION

In this paper, an algorithm for estimating the fundamental fre-
quency of single-pitch notes was described. The application to
audio-to-MIDI conversion for guitar was especially considered.
This application requires very-low algorithmic delay, which is still
an issue with state-of-the-art pitch trackers. In order to minimize
this delay, a new method was proposed. The first stage, equiva-
lent to a spectral peak-picking algorithm, uses an algorithm from
the literature derived form the ESPRIT method. The second stage
is a fundamental frequency estimator inspired by the method pro-
posed by Doval et al., which consists in maximizing a likelihood
function. The new method was tested on real guitar recordings and
was compared to the YIN estimator proposed by de Cheveigné et
al. which can be considered as a reference method. It was showed
that, on this test material, both methods exhibit a similar accu-
racy, but it is important to notice that only the closest MIDI note
was considered, and not the continuous fundamental frequency es-
timation. Concerning the periodicity measure which is used for
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Figure 5: Outputs of the estimation process for E4 note, ESPRIT (left column) and YIN (right column). First row: Signal waveform. Second
row: MIDI note returned by the algorithm (blue) and theoretical value (red). Third row: Periodicity measure (blue) and threshold (red),
log scale. Fourth row: Final MIDI note after thresholding the periodicity measure (blue) and reference value (red). Time origin is manually
aligned with the onset.

note segmentation, the new method was found more stable than
the YIN estimator. This allows to significantly reduce ghost notes
that are commonly observed in audio-to-MIDI conversion. It was
also showed that the ESPRIT-based method is able to provide note
tracking with an algorithmic delay that is very close to the theo-
retical limit, i.e. the fundamental period of the lowest observable
pitch, which is not the case with the YIN method. For that reason,
this new estimator may allow to significantly reduce the latency of
audio-to-MIDI conversion. However, the issue of computational
cost is crucial. The YIN estimator is a fast method, well suited for
real-time implementation. In this preliminary study, our method
was only tested off-line using a non-optimized implementation in
Matlab. But theoretical studies have showed that fast implemen-
tations of the ESPRIT algorithm can reach a reasonable complex-
ity in O(KN log(N)) where K is the number of partials to be
observed (typically 6) and N is the length of the analysis win-
dow (here less than 300 points). This is not much more than a
FFT, which means that an optimized version would be theoreti-
cally compatible with real-time. This point will be investigated in
the future.
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