
A Unified Time-Frequency Method for Synthesizing
Noisy Sounds with Short Transients and Narrow

Spectral Components
Damián Marelli1, Mitsuko Aramaki2, Richard Kronland-Martinet3 and Charles Verron4

1School of Electrical Engineering and Computer Science, University of Newcastle, Australia.
2CNRS-Institut de Neurosciences Cognitives de la Méditerranée, France.

3CNRS-Laboratoire de Mécanique et d’Acoustique, France.
4Orange Labs, Department of Sound and Speech Technologies and Processing, France.

Abstract—The inverse FFT method was proposed to alleviate
the complexity of the additive sound synthesis method in real
time applications, and consists in synthesizing overlapping blocks
of samples in the frequency domain. However, its application is
limited by its inherent trade-off between time and frequency
resolution. In this paper we propose an alternative method
for overcoming this limitation. The proposed method generates
time-frequency noise with an auto-correlation function such that
the sound obtained after converting it to time domain has the
desired time-varying power spectral density. We present synthesis
examples illustrating the simultaneously good time and frequency
resolution of the proposed method and study its complexity.

Index Terms—IFFT sound synthesis, Colored noisy signal,
short transient signal.

I. INTRODUCTION

Various methods are available to generate both realistic and
artificial sounds [1]. Methods based on linear models such
as additive and subtractive synthesis play an important role
since their synthesis parameters can be easily obtained through
an analysis stage [2]. An efficient algorithm for additive
synthesis is called Inverse Fast Fourier Transform (IFFT) [3],
and consists in approximating the time domain signal in
the time-frequency domain. By providing a clever choice of
the analysis window, this method permitted a computational
cost gain of approximately ten times over a time domain
implementation [4].

In the synthesis of audio signals such as musical or en-
vironmental sounds, the stochastic component is modeled as
a random process with time-varying statistics [5]. Using the
IFFT method, this component is synthesized by generating
time-frequency noise whose envelope equals the instantaneous
power spectral density (PSD) of the target signal [5], [6],
[4]. These methods require that the synthesis window length
matches that of the noise auto-correlation function. Thus,
the synthesis of narrowband noises requires a long synthesis
window, which is incompatible with the generation of short
transient signals. This is a severe issue that limits the use of

Financial support for this work was partially provided by the project
"senSons" from the French National Research Agency (ANR).

time-frequency approaches for a wide class of audio signals
such as impacts.

In this paper we propose a time-frequency synthesis method
which achieves frequency and time resolutions, beyond the
inherent trade-off of the IFFT method, while preserving a low
computational cost. We present simulation results illustrating
the performance using practical sound examples.

II. NOISY SOUND SYNTHESIS USING THE IFFT METHOD

A noisy sound y(t) is generally modeled as a stochastic
process with a time-varying spectrum

φy(z, t) = Z1 {ry(τ, t)} ,

where Z1{·} denotes the z-transform with respect to the first
variable, and

ry(τ, t) = E {y(t)y(t− τ)} ,

with E{·} denoting expected value [5]. Using the IFFT
method, the sound y(t) is synthesized by the following
overlap-add procedure:

y(t) =

∞∑

k=−∞

f(t− kD)v(k)(t− kD) (1)

where f(t), t ∈ Z is a synthesis window of tap size M (i.e.,
f(t) = 0 if t < 0 or t ≥ M), which is assumed to satisfy

∞∑

τ=−∞

f2(t− τD) = 1 for all t ∈ Z, (2)

to conserve energy, and D ≤ M is the synthesis hop size. The
k-th block of M samples v(k)(t), t = 0, · · · , M−1 is obtained
doing the inverse discrete Fourier transform (DFT) of an
M -dimensional random vector v(k), whose m-th component
vm(k) is given by

vm(k) = φy(ej2π m−1
M , kD)wm(k) (3)

where wm(k) is the m-th entry of a white complex random
vector w(k) with Gaussian distribution.

29978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010

Synthesis filterbank

[w]1(k)

[w]N (k)

f1(z)

f2(z)

fM (z)

y(t)

S(z)

↑D

↑D

↑D

Figure 1. Scheme for achieving an arbitrary spectral shape.

Using the result in [7, eq. 10], it is straightforward to verify
that (1) is equivalent to a synthesis filterbank operation, i.e.,

y(z) =

M∑

m=1

fm(z) ↑D{vm}(z) (4)

where the filters fm(z) = f(ej2π m−1
M z), m = 1, · · · , M are

frequency-shifted versions of the synthesis window f(z), and
↑D{vm}(k) denotes the upsampling operation with factor D
(i.e., inserting D−1 zeros between every two samples) applied
to the signal vm(k).

It follows from (4) that the frequency resolution of the IFFT
method is determined by the spectral shape of the synthesis
window f(t), and that the time-resolution is given by its
time domain concentration. Hence, this method suffers from
an inherent tradeoff between time and frequency resolution,
turning the synthesis of narrowband noises incompatible with
the generation of short transient signals.

III. PROPOSED SYNTHESIS METHOD

In this section we propose an alternative approach which
overcomes the aforementioned tradeoff. In Sections III-A
and III-B we explain how to achieve arbitrary frequency and
time resolutions, respectively, and in Section III-C we use
these results to describe the proposed method.

A. Achieving Arbitrary Frequency Resolution

In this section we assume that we want to synthesize a
stationary random process with an arbitrary spectral shape.
As depicted in Figure 1, the idea consists of processing an
N -dimensional white random vector w(k) (the value of N
is to be determined by the the number of columns of the
transfer matrix R(z) in (6) below) by an M × N transfer
matrix S(z) so that the signal obtained after synthesis has the
desired spectrum.

Using polyphase representation [8], we can write

y(z) = F(z)S(z)w(z)

where y(z) and F(z) are the polyphase representations of
y(t) and the synthesis filterbank, respectively, having impulse
responses

[y(k)]d = y(kD + 1− d),

[F(k)]d,m = fm(kD − d + 1),

S
y
n
th

e
si

s
fi
lt

e
rb

a
n
k

S
y
n
th

e
si

s
fi
lt

e
rb

a
n
k

A
n
a
ly

si
s

fi
lt

e
rb

a
n
k

Perfect reconstruction

[w]1(k)

[w]N (k)

y(t)
y(t)

a(t)S(z)

f(z) h(z) l(z)

T (z, k)

Figure 2. Scheme for achieving arbitrary time resolution.

for all m = 1, · · · , M , and d = 1, · · · , D. Let φy(z) =
E{y(z)y∗(z)} be the spectrum of y(z), where the super-
script ∗ denotes transpose conjugate. We have that

φy(z) = F(z)S(z)E{w(z)w∗(z)}S∗(z)F∗(z)

= F(z)S(z)S∗(z)F∗(z). (5)

Let φy(z) = R(z)R∗(z) be a spectral factorization of
φy(z) [9]. Then, from (5), the required matrix S(z) needs
to satisfy

R(z) = F(z)S(z) (6)

The minimum-norm solution of (6) is given by:

S(z) = F̃∗(z)R(z)

where F̃(z) is the polyphase representation of the dual window
f̃(z) [10] of f(z). To improve efficiency, the number of non-
zero entries in S(z) can be reduced by solving (6) using sparse
approximation techniques [11].

B. Achieving Arbitrary Time Resolution

Now suppose that we want to change the amplitude of the
spectrum of the random process synthesized in Section III-A,
following an arbitrary law a(t). We can do this in the time
domain by multiplying by a(t) the output of the synthesis
filterbank. To transpose this operation to the time-frequency
domain we add after a(t) a perfect-reconstructing pair of
analysis and synthesis filterbanks (i.e., a pair which achieves
perfect reconstruction), as shown in Figure 2.

The analysis filterbank operation consists of filtering y(t)
using an array of filters hm(z), m = 1, · · · , M followed by a
downsampling operation of factor D (by keeping one out of
D samples). Then, the impulse response [T]m,n(l, k) of the
m, n-th entry of the M ×M transfer matrix T(z, k) shown in
Figure 2 is

[T]m,n(l, k) = (akhm ∗ fn)(lD) (7)

where ak(t) = a(kD − t). Let C be the impulse response
length of hm(z), m = 1, · · · , M . For each k, we can write
ak(t), t = 0, · · · , C − 1 using DFT as follows

ak(t) =

C∑

c=1

α(c)(k)ej
2π(c−1)

C
t. (8)

30

Then, from (7) and (8) we have

T(l, k) =
C∑

c=1

α(c)(k)T(c)(l), (9)

where the impulse response [T(c)]m,n(l) of the m, n-th entry
of T(c)(z) is given by

[T(c)]m,n(l) = (h(c)
m ∗ fn)(lD), (10)

h(c)
m (t) = hm(t)ej

2π(c−1)
C

t. (11)

Remark 1: Since the filters hm(z), m = 1, · · · , M are
frequency-shifted versions of the same prototype h(z), if
R = C/M is integer, then the output of T

(c+rR)
m,n (l) is obtained

from that of T
(c)
m,n(l) by doing an r-step circular shift. Hence,

only the R transfer matrices T
(c)
m,n(l), c = 0, · · · , R− 1 need

to be computed to generate (9).

C. Proposed Synthesis Scheme

Using the results above we can propose a time-frequency
method for synthesizing noisy sounds with the desired fre-
quency and time resolutions. The idea is depicted in Figure 3.
The number P of frequency bands is chosen to achieve the
desired frequency resolution. Notice that P does not need to
be equal to the number M of frequency bands used in the
time-frequency representation. Then, for each p = 1, · · · , P , a
white, N -dimensional vector random process wp(k) is applied
to the input of an M ×N transfer matrix Sp(z). The matrix
Sp(z) is designed as described in Section III-A, so that it
generates at the output a narrow frequency band with the
desired spectral shape. Then, for each k ∈ Z, the coefficients
α

(c)
p (k), c = 1, · · · , C are computed from the desired time-

varying amplitude of the p-th frequency band using (8). The
constants α

(c)
p (k) are then used to multiply the output of the

M ×M transfer matrices T(c)(z), c = 1, · · · , C, which are
computed as explained in Section III-B.

Remark 2: The scheme in Figure 3 requires the computa-
tion of P transfer matrices of dimension M ×N and P ×R
transfer matrices of dimension M × M . Hence, it seems to
suffer from a very high complexity. However, notice that
the non-zero entries of the matrices Sp(z) concentrate in a
neighborhood of the row corresponding to the center of the p-
th frequency band. Also, in view of (10), the non-zero entries
of the matrices T(c)(z) concentrate towards its main diagonal.
Hence, the composition T(c)(z)Sp(z) can be very efficiently
implemented.

IV. A PRACTICAL DESIGN

In this section we use the method proposed in Section III-C
to design a time-frequency sound synthesizer with prescribed
time and frequency resolutions. We use a sampling frequency
of fs = 44.1kHz. We want a frequency resolution of P =
1024 frequencies over the range [−fs/2, fs/2], and we want
the amplitude of the signal in each frequency band to vary
once every 64 samples = 1.4 ms.

To simplify the design, we choose M = P = 1024
frequency bands, and we let the spectral shape of the m-th

S
y
n
th

e
si

s
fi
lt

e
rb

a
n
k

w1(k)

wP (k)

α
(1)
1 (k)T(1)(z, k)

α
(C)
1 (k)T(C)(z, k)

α
(1)
P (k)T(1)(z, k)

α
(C)
P (k)T(C)(z, k)

S1(z)

SP (z)

l(z)

y(t)

Figure 3. Proposed time-frequency synthesis method.

0 20 40 60 80 100 120 140
0

10

20

30

Frequency [Hz]

A
m

pl
itu

de

Figure 4. Frequency response of the synthesis filters fm(z), m = 1, · · · , M .

frequency band equal that of the synthesis filter fm(z). With
these choices, we have that N = 1, and the entries of the M×1
spectral shaping transfer matrix Sm(z) are all zero except for
the m, 1-th entry which is [Sm]m,1(z) = 1. We choose the syn-
thesis hop size D = 3/4M = 768 which minimizes the overall
complexity. We design the prototype filter f(z) using a root
raised cosine filter with roll-off factor β = M/D − 1 = 1/3
and bandwidth BW = π(1 + β)/M = 4π/3M [12], that
guarantees

M∑

m=1

|fm(ejω)|2 = 1 for all ω ∈ [−π, π],

hence a flat spectrum is obtained when all bands have the same
amplitude. The frequency response of the resulting synthesis
filters is shown in Figure 4.

Remark 3: The choice of a root raised cosine filter to
design f(z) results in the synthesis filter fm(z) having infinite
impulse response. However, notice that these filters are only
used to build the transfer matrices T(c), c = 1, · · · , C in (10),
and their influence in the overall complexity is only implicit
in the computation of these matrices.
It follows from equation (10) that the filters hm(z), m =
1, · · · , M need to be concentrated in frequency, so that the
off-diagonal terms of T(c)(z), c = 1, · · · , C vanish quickly.
However, if their frequency response is too concentrated their

31

impulse response length C becomes too big, and therefore,
a large number R of transfer matrices T(c)(z) need to be
computed (recall Remark 1). We found a good compromise by
choosing R = 3 and designing the prototype h(z) as the FIR
filter having impulse response length 1024×R = 3072, which
best approximates in a least-squares a raised cosine window
with roll-off factor β = 1 and BW = 2π/M . The prototype
l(z) of the synthesis filters also has impulse response length
3072 and is computed using the method described in [13],
achieving an analysis/synthesis reconstruction error of −80dB.

As mentioned before, the amplitude of each frequency band
is specified once every 64 samples. In order to build the
coefficients α

(c)
p (k) using (8), we need to interpolate these

values to obtain one value per sample. We do so using a
raised cosine window with β = 1, which is concentrated in
frequency and hence minimizes the number of terms required
in the expansion (9). The interpolated amplitude function has
bandwidth 690Hz, and therefore only C̄ = 1+2MR/64 = 97
terms need to be computed in the expansion (9).

In order to reduce the implementation complexity, we
truncate the transfer matrices T(r)(z), r = 1, · · · , R by
zero-rounding their entries having absolute values smaller
than a threshold chosen 40dB smaller than the maximum
absolute value. After doing so, the computation of T(r)(z),
r = 1, · · · , R requires 95 (real) multiplications per sample1.
The computation of C̄ terms of (9) requires 192 multiplications
per sample. Finally, the synthesis filterbank with filters lm(z),
m = 1, · · · , M is computed using the method [7], which
requires 31 multiplications per sample. Hence, the overall
complexity is 318 multiplications per sample.

In order to illustrate the proposed method we synthesize a
blurry sound effect on a glass impact whose model consists
of narrow frequency bands at 1051 Hz, 1849 Hz, 3388 Hz,
5339 Hz, 7606 Hz and 10163 Hz, whose amplitude decay
exponentially with time constants 4.948, 6.397, 10.78, 21.26,
47.49 and 110.4, respectively. For comparison purposes we
consider the time domain method obtained by multiplying
the output of the filters fm(z) in (4) by the desired am-
plitude values before addition. In this method, Remark 3
does not apply, hence, we design fm(z) to have impulse
response length of 16384 samples. Then, since only 512
frequency bands need to be computed, and each fm(z) needs
to be computed only once every D = 768 samples, the
overall complexity (including the amplitude multiplication
at the output of each fm(z)) is of 11435 multiplications
per sample, i.e., about 36 times more complex than the
proposed time-frequency method. The synthesized signals
and their spectra are shown in Figures 5 and 6, respec-
tively, and their relative square error difference is−27.12dB.
For a perceptual evaluation, this glass impact sound ex-
ample, as well as other examples including waves, wind,
whoosh, stones, etc., can be found at http://www.lma.cnrs-
mrs.fr/~kronland/ICASSP2010/sounds.html.

1Notice that, since the synthesized sound is real-valued, only half of its
spectrum needs to be synthesized.

0 500 1000 1500
−1

−0.5

0

0.5

1

Time [msec]

A
m

pi
ltu

de 99 100 101 102 103 104
−1

−0.5

0

0.5

1

Time domain synthesis
Time−frequency synthesis

Figure 5. Synthesis of a glass impact starting from 100 msec., and detail of
the attack showing a settling time of about 1.5 msec. for the time-frequency
method.

0 2000 4000 6000 8000 10000 12000
10

−4

10
−2

10
0

10
2

10
4

Frequency [Hz]
A

m
pl

itu
de

Time domain synthesis
Time−frequency synthesis

Figure 6. Spectra of the synthesized glass impact sounds.

REFERENCES

[1] C. Roads, The Computer Music Tutorial, Fifth, Ed. MIT Press, 2000.
[2] R. Kronland-Martinet, P. Guillemain, and S. Ystad, “Modelling of nat-

ural sounds by time-frequency and wavelet representations,” Organised
Sound, vol. 2, no. 3, pp. 179–191, 1997.

[3] X. Rodet and P. Depalle, “Spectral envelopes and inverse fft synthesis,”
in Proc. of the 93rd AES Conv., 1992.

[4] X. Rodet and D. Schwarz, Analysis, Synthesis, and Perception of Musical
Sounds: Sound of Music. Springer, 2007, ch. Spectral Envelopes and
Additive + Residual Analysis/Synthesis.

[5] X. Serra and J. O. Smith, “Spectral modeling synthesis: A sound
analysis/synthesis system based on a deterministic plus stochastic de-
composition,” Comp. Music. J., vol. 14, no. 4, 1990.

[6] X. Amatriain, J. Bonada, A. Loscos, and X. Serra, DAFX: Digital Audio
Effects. John Wiley & Sons Publishers, 2002, ch. Spectral Processing.

[7] S. Weiss and R. Stewart, “Fast implementation of oversampled modu-
lated filter banks,” Electronics Letters, vol. 36, no. 17, pp. 1502–1503,
August 2000.

[8] P. Vaidyanathan, Multirate Systems and Filterbanks. Englewood Cliffs,
N.J.: Prentice Hall, 1993.

[9] A. Sayed and T. Kailath, “A survey of spectral factorization methods,”
Numerical Linear Algebra with Applications, vol. 8, no. 6-7, pp. 467–
496, 2001.

[10] K. Gröchenig, Foundations of time-frequency analysis, ser. Applied and
Numerical Harmonic Analysis. Boston, MA: Birkhäuser Boston Inc.,
2001.

[11] J. Tropp, “Greed is good: algorithmic results for sparse approximation,”
IEEE Tr. on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[12] J. Proakis, Digital Communications, 4th ed. McGraw-Hill, 8 2000.
[13] J. Morris and Y. Lu, “Generalized Gabor expansions of discrete-time

signals in l2(Z) via biorthogonal-like sequences,” IEEE Transactions
on Signal Processing, vol. 44, no. 6, pp. 1378–1391, 1996.

32

