
Event-driven Interactive Solid Sound Synthesis

C. Verron, M. Aramaki, A. Gonot, T. Scotti, C.-E. Rakovec, A. Mingasson,
and R. Kronland-Martinet

LMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille
name@lma.cnrs-mrs.fr

Abstract. This paper describes a framework for interactive solid sounds
in virtual environments. In an o✏ine stage, the finite element method
is used to pre-compute the modal responses of objects impacted at sev-
eral locations. At runtime, contact/collision events from the game engine
are used to drive excitation functions simulating impacts, rolling or fric-
tion interactions at audio rate. These functions are filtered by modal
filterbanks simulating object resonances. Collision location is taken into
account to modify the amplitude of resonant filters in real-time. This
approach is appropriate for reproducing impact, rolling and friction in-
teractions between objects. Results are illustrated by a real-time demon-
stration using the Blender Game Engine and Max/MSP.

1 Introduction

Procedural sound synthesis is an attractive alternative to pre-recorded sound
samples for increasing the sense of realism in games and interactive audio/-
graphics scenes [4, 5, 13]. In this paper we focus on interactive solid sounds and
their possible integration with a physics engine for rendering impact, rolling
and friction sounds in virtual worlds. Previous works in the computer graphics
community provided methods for modeling modal properties of objects with ar-
bitrary shapes [7, 3, 11] and controlling modal synthesis by game engine collision
events [12, 9, 14]. This paper provides an overview of existing techniques, and in-
troduces a demonstration framework for event-driven interactive sound synthesis
in games and virtual environments. The framework is illustrated on Figure 1.
Focusing on solid sounds, we use the action-object paradigm [2], recalled in
Section 2, to generate complex interactions (impact, rolling, friction) between
modal rigid-bodies. Section 3 describes the computation of modal resonances
for arbitrary 3D objects with the finite element method. In Section 4, methods
are proposed to compute an audio rate excitation function, controlled by game
physics events to drive the sound synthesis. Finally, the framework is illustrated
by an interactive rigid-body demonstration using Blender and Max/MSP.

This work is supported by the French National Research Agency (ANR) under the
Physis Project - CONTINT 2012 (ANR-12-CORD-0006). The authors thank I. Rosu,
E. Debieu and C. Gondre for their help.

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 960

2 C. Verron et al.

GAME%ENGINE%
%
%
%
%
%
%

Physics%Engine%

3D%Graphics%
Rendering%

SOUND%ENGINE%
%
%
%
%
%
%

Event%mapping%

Synthesis%

Events
e.g.,
collision,
position,
velocity…

Fig. 1. Framework for event-driven interactive sound synthesis.

2 Action-object paradigm

Our framework is based on the action-object paradigm [2] that models inter-
active resonating objects by two components: an excitation function modeling
the action (e.g., impact, rolling, friction) and a set of resonant filters modeling
modal resonances of the object.

The excitation function e t is computed at audio rate so that the sound x t

produced by the object in response to e t is given by :

x t e r t (1)

with:

r t

M

m 1

am sin 2⇡fmt e

↵mt (2)

where the frequencies fm are the modal frequencies of the excited object, while
the amplitudes am depend on the excitation point, and the decay factors ↵m

are characteristic of the material [1]. Using this approach, interactions with ar-
bitrary objects can be realized in two stages: first modal responses of the object
are determined for several impulse locations. Second, an audio rate excitation
function is computed and convolved by impulse responses to simulate complex
interactions at di↵erent locations on the object. These two stages are described
in more detail in the following parts.

3 Modal parameters for arbitrary shapes

Several approaches have been proposed in the computer graphics community to
model modal responses of rigid-bodies, based on finite elements [7] and spring-
mass systems [10]. [7] first introduced the finite element method (FEM) with
thetraedral meshes to extract modal resonances from arbitrary shaped objects.
[3] extended the approach using the boundary element method (BEM) to com-
pute sound radiation of each mode, leading to complex directivity patterns. [8]
proposed a multi-scale voxelisation process to alleviate FEM computational com-
plexity when dealing with large mesh objects. Also, an hybrid physics/example-
guided approach was proposed in [11] for extracting FEM material parameters

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 961

Interactive solid sounds 3

Notre idée
Pourquoi faire simple, quand on peut faire compliqué ?

T. Scotti () 15/03/2013 7 / 11�� �o�eling �E� �n�lysis

Modal&frequencies&&
+&

Modal&litudes&for&each&vertex&

Fig. 2. Modal Analysis of arbitrary 3D objects. The finite element method using thin
shell elements is performed in Sysnoise to compute modal frequencies of the object and
their amplitude for impulses on each vertex.

from recorded sound samples, allowing independent shape/material transforma-
tions.

In this study, we used the FEM approach [7] with thin shell elements to
model arbitrary shaped objects. Analysis was performed using the Sysnoise
vibro-acoustic software1. A Matlab toolbox was designed to import generic 3DS
models into Sysnoise and automatize the modal analysis, as illustrated on Fig-
ure 2. Sysnoise allows to compute modal responses to excitations using both
FEM and BEM models. In practice FEM analysis requires elements sizes ap-
proximately ten times smaller than the analysed wavelength. This imposes high
resolution meshes, sometimes leading to high computation time. To reduce the
complexity, a first approximation consists in assuming omnidirectional directvity
(i.e., no BEM calculation) and use the movement (or velocity) of a single vertex
on the object (typically the impacted vertex) to compute the modal response.
Such simplification is crude but convenient when a high number of impact lo-
cations are pre-computed for a single object. Note that since calculations are
performed o✏ine, the full FEM/BEM chain provided by Sysnoise may still be
used for better accuracy at a few impact locations.

Considering the synthesis model of Eq. 1, modal analysis provides the fre-
quencies fm of resonant filters and their amplitudes am for several impact loca-
tions on the object (potentially for each vertex). In our synthesizer, the dampings
are given to the sound designer as an e�cient control to interpolate between dif-
ferent materials, as proposed in [1]. In the next section we present our approach
to compute the audio rate excitation function e t (see Eq. 1) from game engine
events, to sonify complex interactions between rigid-bodies.

1 http://www.lmsintl.com/SYSNOISE

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 962

4 C. Verron et al.

4 Event-based control

In [12] rigid-body physics events from the game engine were used to drive the
sound generation, leading to tightly-coupled audio/graphics. Since the physics
engine typically run at low frame rate (e.g., 60 frames per second) a mapping
stage is necessary to control synthesis from physics events (see Figure 1). This
is especially true when using the action-object paradigm which requires an exci-
tation function at audio rate to feed the resonant filterbank. Physically inspired
mapping strategies were proposed in the Phya library [6] to control synthesis
process from rigid-body movements. Additionally, bump-map information was
used for computing the excitation function from image textures [9]. This was
extended in [14] where a three layers excitation function was computed from
object geometry, bump-map, and additional fine grain audio texture.

Our approach for computing the audio rate excitation function is based on
the model proposed in [2]. In this study the authors proposed a generic excita-
tion model, allowing users to navigate continuously between impact, rolling and
friction (rubbing, scrapping). We use this model along with collision/contact
events provided by the game engine to simulate real-time rigid-body interac-
tions. Physics engines typically provide developers with enter/stay/exit collision
events. Here, these events are used to switch between impact, rolling and friction
excitation models. At each event, object velocity is sent to the sound engine to
parameterize the excitation function. For more details on the excitation function
parameters, the reader is referred to [2].

5 Implementation

A demonstration was designed to illustrate the event-driven sound synthesis
framework. We use the Blender Game Engine2 for physics and graphics render-
ing, while sound synthesis is performed in Max/MSP3.

The Blender scene is based on the excellent Studio Physics Demo4 by Phymec.
Here it involves two objects, a ball and a cube, that can be manipulated by the
user and interact with a square plate. Figure 3 illustrates the scene, and the sound
synthesis implementation scheme. Modal responses of the plate were computed
o✏ine using Sysnoise for 38 38 impact locations evenly spaced on a square grid.
The excitation function e t and resonant filters Fi Z are implemented using a
set of Max/MSP objects provided by the Metason project5. At run-time, com-
puted modal amplitudes are linearly interpolated to reflect the position of the
objects on the plate.

Appropriate logic is implemented in the Blender Logic Editor to send infor-
mation from Blender to Max/MSP at each collision event (see Figure 4). Event

2 http://www.blender.org/
3 www.cycling74.com
4 http://youtu.be/hM3wke1mVgE
5 http://metason.cnrs-mrs.fr/

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 963

Interactive solid sounds 5

��,y� Base%of%
modal%

amplitudes%

e�t�

F1(Z)%

F2(Z)%

FM(Z)%

…

��

��

��

s�t� �

��,y�

Fig. 3. Interactive plate/ball demonstration. Excitation function e t (for impact,
rolling...) is convolved by the plate modal filterbank F1 Z , ...FM Z . Pre-computed
amplitudes a1, ..., aM are applied to simulate the ball/plate contact point.

communication between both softwares is realized with the Python implementa-
tion of Open Sound Control (OSC) provided by Labomedia6. Additionally, the
script given below shows an example for sending the velocity of Blender objects
via OSC, to control the excitation function of modal synthesis in Max/MSP.

Fig. 4. Logic bricks for detecting object collisions in the Blender Logic Editor

Python script for sending OSC messages from Blender to Max/MSP

OSC Blender Collision Demo

#

send object velocity via OSC

when enter/stay collision is detected

6 http://wiki.labomedia.org/index.php/Communication entre Pure-
data et Blender en OSC

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 964

6 C. Verron et al.

from bge import logic

import OSC

ip_send = ’localhost’

port_send = 11000

client = OSC.OSCClient()

msg = OSC.OSCMessage()

print("osc client has been created !")

def sendOSC(controller):

get object velocity

owner = controller.owner

v = owner.getLinearVelocity()

v = v.length # keep magnitude

get collision sensor

touch_sensor = controller.sensors[0]

if (touch_sensor.positive): # object is touching Ground

if (owner[’touchingGround’]==0): # enter collision

print(’Enter collision’)

owner[’touchingGround’]=1

address = "/blender/" + owner.name + "/groundEnterCollision"

else: # stay on collision

print(’Stay on collision’)

address = "/blender/" + owner.name + "/groundStayOnCollision"

msg.setAddress(address)

msg.append(v)

client.sendto(msg, (ip_send, port_send))

msg.clear()

else:

owner[’touchingGround’]=0

6 Conclusion

We described a framework for event-driven synthesis of impact, rolling and friction
sounds in virtual environments. Modal responses of rigid-bodies are computed o✏ine
for a set of impact locations using the Sysnoise acoustic software. At runtime, an
excitation function is computed from the game engine collision events. This excitation
function is filtered by the modal responses of colliding objects. Impact location is
taken into account by modulating the energy of modal components in real-time. A
demonstration illustrates these functionalities for simulating the interactions between

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 965

Interactive solid sounds 7

a ball, a cube and a plate. This approach for linking sound synthesis processes to
the game physics engine provides promising results for tightly-coupled audio/graphics
integration. In future works, perceptual evaluations should be carried out for validation
and calibration of the system.

References

1. M. Aramaki, M. Besson, R. Kronland-Martinet, and S. Ystad. Controlling the
perceived material in an impact sound synthesizer. IEEE Transactions on Audio,
Speech, and Language Processing, 19(2):301–314, 2011.

2. S. Conan, E. Thoret, M. Aramaki, O. Derrien, C. Gondre, R. Kronland-Martinet,
and S. Ystad. Navigating in a space of synthesized interaction-sounds: Rubbing,
scratching and rolling sounds. In Proc. of the 16th Int. Conference on Digital Audio
E↵ects (DAFx-13), 2013.

3. D. L. James, J. Barbič, and D. K. Pai. Precomputed acoustic transfer: Output-
sensitive, accurate sound generation for geometrically complex vibration sources.
ACM Transactions on Graphics (Proc. SIGGRAPH 2006), 25(3):987–995, 2006.

4. C. Picard Limpens. Expressive Sound Synthesis for Animations. PhD thesis,
Université de Nice, Sophia Antipolis, 2009.

5. D. B. Lloyd, N. Raghuvanshi, and N. K. Govindaraju. Sound synthesis for impact
sounds in video games. In Symposium on Interactive 3D Graphics and Games, I3D
’11, pages 55–62, New York, NY, USA, 2011. ACM.

6. D. Menzies. Physically motivated environmental sound synthesis for virtual worlds.
Springer EURASIP Journal on Audio, Speech, and Music Processing, 2010, 2010.

7. J. F. O’Brien, C. Shen, and C. M. Gatchalian. Synthesizing sounds from rigid-
body simulations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics
symposium on Computer animation, pages 175–181, 2002.

8. C. Picard, C.Frisson, F. Faure, G. Drettakis, and P. G. Kry. Advances in modal
analysis using a robust and multiscale method. EURASIP J. Adv. Signal Process,
2010:7:1–7:12, 2010.

9. C. Picard, N. Tsingos, and F. Faure. Audio texture synthesis for complex contact
interactions. In proceedings of the 8th Workshop in Virtual Reality Interactions
and Physical Simulation, 2008.

10. N. Raghuvanshi and M. C. Lin. Interactive sound synthesis for large scale envi-
ronments. In Proceedings of the 2006 symposium on Interactive 3D graphics and
games, pages 101–108, 2006.

11. Z. Ren, H. Yeh, and M. C. Lin. Example-guided physically based modal sound
synthesis. ACM Trans. Graph., 32(1):1:1–1:16, 2013.

12. K. van den Doel, P. G. Kry, and D. K. Pai. Foleyautomatic: physically-based sound
e↵ects for interactive simulation and animation. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 537–544, 2001.

13. C. Verron and G. Drettakis. Procedural audio modeling for particle-based envi-
ronmental e↵ects. In Proceedings of the 133rd AES Convention. AES, October
2012.

14. R. Zhimin, Y. Hengchin, and M. C. Lin. Synthesizing contact sounds between
textured models. In Proceedings of the 2010 IEEE Virtual Reality Conference, VR
’10, pages 139–146. IEEE Computer Society, 2010.

Proc. of the 10th International Symposium on Computer Music Multidisciplinary Research, Marseille, France, October 15-18, 2013

CMMR2013 - 966

