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ABSTRACT

Identifying the acoustical modes of a resonant object can be achieved
by expanding a recorded impact sound in a sum of damped sinu-
soids. High-resolution methods, e.g. the ESPRIT algorithm, can
be used, but the time-length of the signal often requires a sub-band
decomposition. This ensures, thanks to sub-sampling, that the sig-
nal is analysed over a significant duration so that the damping co-
efficient of each mode is estimated properly, and that no frequency
band is neglected. In this article, we show that the ESPRIT algo-
rithm can be efficiently applied in a Gabor transform (similar to a
sub-sampled short-time Fourier transform). The combined use of a
time-frequency transform and a high-resolution analysis allows se-
lective and sharp analysis over selected areas of the time-frequency
plane. Finally, we show that this method produces high-quality re-
synthesized impact sounds which are perceptually very close to the
original sounds.

1. INTRODUCTION

The context of this study is the identification of acoustical modes
which characterize a resonant object, which is of great use when
building an environmental sound synthesizer (see [1] or [2] for
an insight on such synthesizers). Practically, the analysis is made
from recorded impact sounds, where the resonant object is hit by
another solid object (e.g. a hammer). Assuming that the impact
sound is approximately the acoustical impulse response of the res-
onant object, each mode corresponds to an exponentially damped
sinusoid (EDS). The modal analysis thus consists of estimating
the parameters of each sinusoidal component (amplitude, phase,
frequency and damping). These parameters will be stored, and
eventually modified, before further re-synthesis. In this paper, we
consider only the analysis part.

In the past decades, significant advances have been made in
the field of system identification, especially for estimating EDS
parameters in a background noise. Although the so-called high-
resolution methods or subspace methods (MUSIC, ESPRIT) [3, 4]
were proved to be more efficient than spectral peak-picking and
iterative analysis-by-synthesis methods [5], few applications have
been proposed. One can suppose that the high computational com-
plexity of these methods is a major drawback to their wide use: on
a standard modern computer, the ESPRIT algorithm can hardly
analyse more than 104 samples, which corresponds roughly to 200
ms sampled at 44100 Hz. This is usually too short for analysing
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properly impact sounds which can last up to 10 s. Sub-band de-
composition with critical sub-sampling in each band seems to be
a natural solution to overcome the complexity problem, as it has
already been shown in [6] and [7]. Another drawback is that ES-
PRIT gives accurate estimates when the background noise is white,
which is usually not the case in practical situations. This problem
can be overcome by the use of whitening filters. The estimation
of the model order (i.e. the number of modes) is also an important
issue. Various methods have been proposed for automatic esti-
mation of the order, e.g. ESTER [8], but this parameter is often
deliberately over-estimated in most practical situation.

In this paper, we propose a novel method for estimating the
modes with ESPRIT algorithm: we first apply a Gabor Transform
(GT), which is basically a sub-sampled version of the short-time
Discrete Fourier Transform (DFT), to the original sound in order
to perform a sub-band decomposition. The number of channels
and the sub-sampling factor depend on the Gabor frame associated
to the transform. We show that an EDS in the original sound is
still an EDS inside each band, and the original parameters can be
recovered from a sub-band analysis using ESPRIT. Furthermore, if
the number of frequency sub-bands is high enough, it is reasonable
to assume that the noise is white inside each sub-band. We also
propose a method to discard insignificant modes a posteriori in
each sub-band.

The paper is organised as follows: first, in a brief state-of-the-
art, we describe the signal model, the ESPRIT algorithm and the
Gabor transform. Then, we show that original EDS parameters can
be recovered by applying the ESPRIT algorithm in each frequency
band of the Gabor transform. In the next part, we describe an
experimentation on a real metal sound, and show the efficiency of
our method. Finally, we discuss further improvements.

2. STATE OF THE ART

2.1. The signal model and the ESPRIT algorithm

The discrete signal to be analysed is written:

x[l] = s[l] + w[l] (1)

where the deterministic part s[l] is a sum of K damped sinusoids:

s[l] =

K�1X

k=0

↵kzl
k (2)

where the complex amplitudes are defined as ↵k = ak ei�k (con-
taining the initial amplitude ak and the phase �k), and the poles
are defined as zk = e�dk+2i⇡⌫k (containing the damping dk and
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the frequency ⌫k). The stochastic part w[l] is a gaussian white
noise of variance �2.

The ESPRIT algorithm was originally described by Roy et. al.
[4], but many improvements have been proposed. Here, we use the
Total Least Square method by Van Huffel et. al [9]. The principle
consists of performing a SVD on an estimate of the signal corre-
lation matrix. The eigenvectors corresponding to the K highest
eigenvalues correspond to the so called signal space, while the re-
maining vectors correspond to the so called noise space. The shift
invariance property of the signal space allows a simple solution for
the optimal poles values zk. Then, the amplitudes ↵k can be re-
covered by solving a least square problem. The algorithm can be
described briefly as follows:

We define the signal vector:

x =
⇥

x[0] x[1] . . . x[L � 1]
⇤T

, (3)

where L is the length of the signal to be analysed. The Hankel
signal matrix is defined as:

X =

2

6664

x[0] x[1] . . . x[Q � 1]
x[1] x[2] . . . x[Q]

...
...

...
x[R � 1] x[R] . . . x[L � 1],

3

7775
(4)

where Q, R > K and Q + R � 1 = L. We also define the
amplitude vector:

↵ =
⇥

↵0 ↵1 . . . ↵K�1

⇤T
, (5)

and the Vandermonde matrix of the poles:

ZL =

2

6664

1 1 . . . 1
z0 z1 . . . zK�1

...
...

...
...

zL�1
0 zL�1

1 . . . zL�1
K�1

3

7775
. (6)

Performing a SVD on X leads to:

X = [U1U2]


⌃1 0
0 ⌃2

� 
V1

V2

�
, (7)

where ⌃1 and ⌃2 are diagonal matrix containing respectively the
K largest singular values, and the smallest singular values; [U1U2]
and [V1V2] are respectively the corresponding left and right singu-
lar vectors. The shift-invariance property of the signal space leads
to:

U#

1 �1 = U"

1 , V #

1 �2 = V "

1 , (8)

where the eigenvalues of �1 and �2 provide an estimation of the
poles zk. (.)" and (.)# respectively stand for the operators dis-
carding the first line and the last line of a matrix. Thus, zk can
be estimated by diagonalization of matrix �1 or �2. The associ-
ated Vandermonde matrix ZL is computed. Finally, the optimal
amplitudes with respect to the least square criterion are obtained
by:

↵ = (ZL)†x, (9)

where (.)† denotes the pseudoinverse operator.

2.2. The Gabor Transform

The Gabor transform of signal x[l] can be written as:

�[m, n] =

L�1X

l=0

g[l � an]x[l] e�2i⇡l m
M , (10)

where g[l] is the analysis window, a is the time-step and M the
number of frequency channels. (.) denotes the complex conju-
gate. m is a discrete frequency index and n a discrete time-index.
{g, a, M} is called a Gabor frame. For some frames, this trans-
form can be inverted. A necessary condition is a  M (for more
details, see for instance [10]). The signal �[m, n] for a fixed in-
dex m can be seen as a sub-sampled and band-pass filtered version
of the signal x[l]. As the sub-sampling reduces the length of the
data, we apply the ESPRIT algorithm to each frequency channel
in order to analyse longer signals.

3. ESPRIT IN A GABOR TRANSFORM

In this section, we investigate the application of the ESPRIT algo-
rithm to a single channel of the GT. As the GT is linear, we separate
the contribution of the deterministic part s[l] and the contribution
of the noise w[l].

3.1. Deterministic part

We denote c[m, n] the GT of s[l] in channel m and time index n.
We also note ck[m, n] the GT of the signal zl

k associated to the
pole zk:

ck[m, n] =

L�1X

l=0

g[l � an]zl
k e�2i⇡l m

M . (11)

According to the signal model (2), is can be easily proved that:

c[m, n] =

K�1X

k=0

↵̃k,mz̃n
k,m, (12)

where the apparent pole z̃k,m can be written as:

z̃k,m = za
k e�2i⇡a m

M , (13)

and the apparent amplitude:

↵̃k,m = ↵k ck[m, 0]. (14)

In other words, the deterministic part of the signal in each channel
is still a sum of exponentially damped sinusoids, but the apparent
amplitudes and phases are modified.

3.2. Stochastic part

Assuming that the time-step a is close to M ensures that the GT
of the noise in each channel is approximately white. Furthermore,
it has been proved that the Gabor transform of a gaussian noise is
a complex gaussian noise [11]. So we assume that the GT of w[l]
in each channel is a complex white gaussian noise.
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3.3. Recovering the signal parameters

As the signal model is still valid, it is reasonable to apply ESPRIT
on c[m, n]. We note cm the vector of GT coefficients in the chan-
nel m and Sm the Hankel matrix built from c[m, n]. Applying the
ESPRIT algorithm to Sm leads to the estimation of the apparent
poles z̃k,m. Inverting equation (13) leads to:

zk = e2i⇡ m
M (z̃k,m)

1

a . (15)

Because of the sub-sampling introduced by the GT, it can be seen
from equation (13) that aliasing will occur when the frequency
of a pole is outside the interval

⇥
m
M � 1

2a , m
M + 1

2a

⇤
. To avoid

aliasing, we choose the analysis window g[l] so that its bandwidth
is smaller than 1

a . That way, the possible aliasing components will
be attenuated by the band-pass effect of the Gabor transform.

We note Z̃N
m the Vandermonde matrix of the apparent poles

z̃k,m (N is the time-length of signal c[m, n]). The least square
method for estimating the amplitudes leads to:

↵ =
(Z̃N

m)†cm

ck[m, 0]
. (16)

Without noise, according to equation (12), each EDS should
be detected in each channel, which generates multiple estimations
of the same modes. Theoretically, the model order should be set to
K in each channel. However, this is usually a large over-estimation.
Because each channel of the GT behaves like a band-pass filter, an
EDS with a frequency far from m

M will be attenuated and consid-
ered as noise. Thus practically, the exact number of detectable
components in each channel is unknown. So we set the model or-
der in each channel with the ESTER criterion (see section 4.3 for
implementation details).

4. EXPERIMENTATION

When applied on synthetical sounds that strictly verify the signal
model (1), the full-band ESPRIT algorithm, as well as the ESTER
criteria, estimate the model parameters with an excellent precision
(see [6], [8]). Estimation errors are observed when dealing with
real-life sounds. Therefore this section does not consider the anal-
ysis of synthetical sounds, but focuses on the analysis/synthesis of
a real metal sound m5 (which can be listened to at [12]). m5 has
been produced hitting a metal plate with a drum stick. Observing
its waveform, Fourier transform and spectrogram (Fig. 4a, 4e and
1) one can see that it presents a rich spectral content and significant
lasting energy up to 6 s.

4.1. Analysis with full-band ESPRIT method

Considering the size of the Hankel matrix corresponding the whole
sound (around 150000⇥150000), only a part of the original sig-
nal can be analysed with the full-band ESPRIT algorithm. Fig. 2
shows the ESTER criteria cost function computed for the 10000
first samples of m5. The optimal model order theoretically cor-
responds to the maximum of this function, which is reached here
for K = 4 modes. This value is obviously not consistent, as one
can see on the spectrogram of m5: the spectral content is obvi-
ously much more complex. A reasonable compromise would be
to choose the maximum order for which the cost function is above
a given threshold. For instance, this threshold can be set to 100.
The corresponding model order is K = 206. After applying the

Figure 1: Spectrogram of m5.

ESPRIT algorithm, 29 EDS appear to have a negative damping,
which will form diverging components at the re-synthesis. Since
they do not describe physical modes, they must be discarded. The
resulting synthesised sound m5_std_esprit ([12]) is unsatis-
fying from a perceptual point of view, and reveals that the damp-
ing behaviour of some modes has been wrongly estimated as well.
Furthermore there is a significant difference in the spectral content
of the original and the re-synthesized sound above 12000 Hz, as
shown by Fig. 3 and 4e.

Figure 2: ESTER criteria cost function computed for the 10000
first samples of the full-band signal m5.

4.2. Analysis with ESPRIT in a Gabor transform

The chosen Gabor frame consists in a Blackman-Harris window of
length 1024, a time-step parameter a = 32, and a number of chan-
nels M = 1024. It is unnecessary to apply the ESPRIT algorithm
over regions of the time-frequency plane that only contain noise.
Since the most important deterministic information is contained
in the channels of high energy, those channels can be identified
using a peak detection algorithm over the energy profile of the Ga-
bor transform as shown in Fig. 5. In a software environment, the
choice of which channels will be analysed could be left to the user.
It is reasonable to think that the noise whitening induced by the
sub-band division of the spectrum makes the ESTER criteria more
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(a) Waveform of the metal sound m5 (b) Initial amplitude

(c) Damping (d) Energy square root

(e) DFT spectrum of m5 (f) DFT spectrum of the re-synthesized sound m5_resyn with all com-
ponents

Figure 4: Overview of the analysis of m5 (a) using the ESPRIT algorithm over its Gabor transform. (b), (c) and (d) show the 246 mode
parameters which have been initially extracted. (e) and (f) respectively show the DFT spectrum of the original sound m5 and the DFT
spectrum of the re-synthesised sound m5_resyn; both sounds are available at [12]. The 152 modes marked with a black dot are the ones
that remain after discarding the modes which initial amplitude is below the absolute detection threshold; the resulting synthesis sound
m5_resyn_amp_ts can be listened to at [12].
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Figure 3: DFT spectrum of the re-synthesized sound
m5_std_esprit obtained by applying a full band ESPRIT
algorithm. The model order is K = 206.

Figure 5: Energy of the Gabor transform of m5 computed for each
of its channels. The dots correspond to the channels identified as
peaks.

reliable than in the full-band case, therefore the analysis order is
computed for each of the selected channels, and set to the maxi-
mum of the ESTER criteria cost function. Doing so, a total number
of 250 modes is obtained.

4.3. Discarding multiple components

If the distance between a set of channels on which an analysis has
been performed is smaller than the bandwidth of the analysis win-
dow g[l], the same component is likely to appear in all of these
channels. These multiple estimations of the same component have
to be identified, and only one will be kept for the final re-synthesis:
the one which is the closest to the central frequency of its detec-
tion channel. In the example presented here, 4 components have
been identified as replicas using a frequency confidence interval
of 1 Hz. Fig. 4b, 4c and 4d show the mode parameters (am-
plitude, damping, energy as function of frequency) that remain
after discarding the replicas. The resulting re-synthesized sound
m5_resyn can be listen to on [12]. Fig. 4f shows the DFT spec-
trum of m5_resyn which can be compared to the DFT spectrum
of the original analysed sound Fig. 4e.

4.4. Discarding irrelevant components

The estimated set of modes is the one that best fits the signal model
(2) with respect to the Total Least Square criterion. However, as
shown in Fig 4b, some of those modes are not relevant for they
have an insignificant energy. In order to produce perceptually con-
vincing sounds, one can rely on psychoacoustic results in order
to discard inaudible modes. For instance, the absolute detection
threshold can be used to discard modes by observing their initial
amplitude. The black doted modes on Fig. 4b, 4c and 4d rep-
resent the modes that remain after applying an absolute detection
threshold ([13]) and setting the minimum of the threshold to the
minimum amplitude that the sound format can handle (e.g. ±1
for wav format coded as 16 bits integers). The resulting sound
m5_resyn_amp_ts, containing 152 modes, can be listened to
at [12].

It is also possible to use energy arguments and favour high
energy modes over low energy modes. In the directory named
‘Cumulative synthesis’ available at [12] are stored successive re-
synthesis of m5 computed by successively adding the modes sorted
in decrescent order of energy. One can note that there is no sig-
nificative perceptual difference between the sounds beyond 105
modes.

5. FURTHER IMPROVEMENTS

One of the advantages provided by the use of time-frequency rep-
resentations is the existence of efficient statistical estimators for
the background noise. As it can be seen on Fig. 1, a significant
number of Gabor coefficients describing an impact sound corre-
spond to noise, and can therefore be used to estimate the variance
of the stochastic part of the signal (see [11]). If the additive noise
is coloured, it is even possible to estimate the variance in several
selected frequency bands. Knowing the variance of the noise for
each frequency channel offers the possibility to use noise masking
properties of the human hearing to discard inaudible components,
and possibly lead to a more selective criteria than the absolute de-
tection threshold described in section 4.4.

The concept of nonstationary Gabor frames ([14]) makes it
also possible to adapt the resolution of the Gabor transform so
as to get an optimal compromise between precision and compu-
tational cost. It would allow, for instance, to take into account the
logarithmical frequency resolution of the human hearing when ap-
plying the Gabor transform. Furthermore, it can be observed that
the damping usually decreases with frequency; nonstationary Ga-
bor frames would allow to adapt the time-step parameter of the
Gabor frame along the frequency scale, so that computational cost
is saved while a sufficient number of coefficients are taken for the
analysis.

6. CONCLUSION

It has been shown that using the ESPRIT algorithm over time-
frequency representations leads to perceptually convincing re-synthesis.
The method has the same benefits than the sub-band analysis: it
allows an extension of the analysis horizon, and it diminishes the
complexity of the problem by only considering successive regions
in the frequency domain; but on top of that, the information given
by the time-frequency representation is of great use for targeting
the analysis on the time-frequency intervals that contain the de-
sired information. This avoids unnecessary analysis and reduces
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the global computational cost.
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