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Abstract. In this study, we aimed at determining statistical models that allowed
for the classification of impact sounds according to the perceived material (Wood,
Metal and Glass). For that purpose, everyday life sounds were recorded, analyzed
and resynthesized to insure the generation of realistic sounds. Listening tests were
conducted to define sets of typical sounds of each material category by using a
statistical approach. For the construction of statistical models, acoustic descrip-
tors known to be relevant for timbre perception and for material identification
were investigated. These models were calibrated and validated using a binary lo-
gistic regression method. A discussion about the applications of these results in
the context of sound synthesis concludes the article.

1 Introduction

Sound classification systems are based on the calculation of acoustic descriptors that
are extracted by classical signal analysis techniques such as spectral analysis or time-
frequency decompositions. In this context, many sound descriptors depending on the
specificities of sound categories were defined in the literature, in particular in the frame-
work of MPEG 7 [1]. Indeed, descriptors were proposed for speech recognition [2],
audio indexing [13l4], music classification [S]] or for psycho-acoustical studies related
to timbre [6L7]. Nevertheless, these classification processes would be significantly im-
proved if perceptually relevant information conveyed in acoustic signals could be iden-
tified to enable fewer and more relevant descriptors to characterize the signal.

In this current study, we aim at determining statistical models that allow categoriza-
tion of impact sounds as a function of the perceived material based on few acoustic
descriptors. For that purpose, we investigated the acoustic descriptors that are known
to be relevant for timbre perception and material identification. In practice, a sound
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data bank constituted of realistic impact sounds from different materials (Wood, Metal,
Glass) was generated using analysis-synthesis techniques. Then, a morphing process
allowed us to build sound continua that simulate continuous transitions between sounds
corresponding to different materials. Listening tests were conducted and we used a sta-
tistical approach to determine the sets of sounds that were judged as typical and non
typical for each material category. The use of sound continua allowed for the determi-
nation of perceptual borders between these typical and non typical sounds as a function
of the position along the continua to identify the variation range of parameters for each
material category. A statistical model of binary logistic regression was calibrated and
validated based on the calculation of selected descriptors for each sound category. We
finally address some perspectives of this study in particular, in the domain of sound
synthesis.

2 Categorization Experiment

Twenty-two participants (11 women, 11 men), 19 to 35 years old were tested in this
experiment. They were all right-handed, non-musicians (no formal musical training)
and had no known auditory or neurological disorders. They all gave written consent to
participate in the test and were paid for their participation.

Sounds were pseudo-randomly presented through one loudspeaker (Tannoy S800)
located 1 m in front of the participants who were asked to categorize sounds as from
impacted Wood, Metal or Glass materials, as fast as possible, by pressing one response
button out of three. The association between response buttons and material categories
was balanced across participants. Participants’ responses were collected and were aver-
aged for each sound.

To design stimuli, we first recorded (at 44.1 kHz sampling frequency) impact sounds
from everyday life objects of various materials (i.e., impacted wooden beams, metal-
lic plates and various glass bowls) that unambiguously evoked each material category.
Then, based on the analysis-synthesis model described in [§]], we resynthesized these
recorded sounds. To minimize timbre variations induced by pitch changes, all sounds
were tuned to the same chroma (note C), but not to the same octave, due to the specific
properties of the different materials. For instance, Glass sounds could not be transposed
to low pitches as they would no longer be recognized as Glass sounds. The synthe-
sized sounds therefore differed by 1, 2 or 3 octaves depending upon the material. The
new pitches of the tuned sounds were obtained by transposition (dilation of the origi-
nal spectra). In practice, Wood sounds were tuned to the pitch C4, Metal sounds to the
pitches C4 and C5 and Glass sounds to the pitches C6 and C7. Based upon previous
results showing high similarity ratings for tone pairs that differed by octaves [9], an ef-
fect known as the octave equivalence, we presumed that the octave differences between
sounds should not influence categorization. Each time the pitch was modified, the new
value of the damping coefficient of each tuned frequency component was recalculated
according to a damping law measured on the original sound [10]], since the frequency-
dependency of the damping is fundamental for material perception [11]]. Sounds were
finally equalized by gain adjustments to avoid an eventual influence of loudness in the
categorization judgments.



136 M. Aramaki et al.

The resynthesized sounds were further used to create 15 sound continua that simulate
a progressive transition between the different materials. In particular, we
built 5 continua for each of the following 3 transitions: {Wood-Metal}, { Wood-Glass}
and {Glass-Metal}. Each continuum, composed of 20 hybrid sounds, is built using
a morphing process. The interpolation on the amplitudes of the spectral components
was computed by a crossfade technique. Concerning the damping, the coefficients
were estimated according to a hybrid damping law calculated at each step of the
morphing process. This hybrid damping law was computed from an effective
linear interpolation between the 2 extreme damping laws. In practice, 15 continua
(5 for each of the 3 transitions) were built. Sound examples are available at
http://www.Ima.cnrs-mrs.fr/~kronland/Categorization/sounds.html.

3 Determination of Sound Categories

Based on participants’ responses, we aim at determining sounds considered as typical of
each material category (Wood, Metal or Glass) by using a statistical approach. Actually,
the sounds were produced to form progressive transitions from one category to another.
The limits between categories along the continua are thus not known. This causes an
intermediate zone with sounds that represent a mixture of the two extreme sounds.
From a perceptual point of view, the sounds contained in this zone are perceived as
ambiguous.

The limits of each category along continua have to be estimated to define sets of
sounds that are typical of Wood, Metal and Glass categories. The specific percep-
tive space used to address this problem is defined by the three material axes {Wood,
Metal, Glass}. Since the experimental protocol was based on a categorization task with
three-choice answers, the percentages of responses obtained for material categories are
correlated as shown in Table Il Thus, these axes are not orthogonal and a principal
component analysis is therefore carried out (Table 2)).

Table 1. Pearson correlation coefficients of percentages of responses obtained in Wood, Metal
and Glass material category (N= 300). The correlations are significant at the .01 level (2-tailed)
and are represented by **.

Wood Metal

Metal -0.68"* 1
Glass -0.33** -0.48**

Two principal components are extracted; the third component can be neglected (Ta-
ble[2). The perceptive space is thus totally defined in a plane and sounds are grouped
inside a triangle as shown in Figure [[l This data representation shows the repartition
of responses between the three material categories. In a case of a clear discrimination
between categories, all sounds should be distributed in three distinct groups located
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Table 2. Total variance explained by principal component analysis on percentages of responses
obtained for Wood, Metal and Glass categories (N = 300)

Component Eigenvalue % of variance Cumulative (%)
1 1.7 57 57
2 1.3 43 100
3 0 0 100

at the apexes of the triangle and the gaps between groups would mark the limits be-
tween categories. Figure[Ildoes not show three distinct groups and in this sense, reveals
difficulties encountered by participants to classify sounds at intermediate position of
the continua. Moreover, sounds located on the Metal-Glass side of the triangle are well-
aligned, meaning that these sounds were classified as Metal or Glass but never as Wood.
By contrast, sounds located on the Wood-Metal side are not well-aligned, meaning that
these sounds were classified as Wood or Metal but also as Glass. Consequently, it is
not possible to determine the limits of the categories directly from the perceptive space
because of the high number of sounds scattered inside the triangle (ambiguous zone).

Principal component 2

-5

Principal component 1

Fig. 1. Perceptive space defined by the two principal components (factor score plot, N = 300)

In order to determine the limits of the categories, a hierarchical cluster analysis is
carried out on the principal components in a second stage. As presented previously, the
two principal components completely define the perceptive space and are orthogonal.
The distance measurement used is then the Euclidian distance. The method used for
combining clusters is the furthest neighbor (complete linkage). This method is adapted
to the research of globular groups with unequal variances and unequal sizes. Table 3]
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Table 3. Simplified agglomeration schedule of the hierarchical clustering procedure (N = 292;
8 sounds were missing because their distance does not allow an attribution to one of the three
groups A, B or C). At each agglomerating step, the type of continua, the Min and Max indices,
the number of samples in the agglomerate (S), the identified group (A, B or C) and the associated
category (Wood, Metal or Glass) are indicated.

Agglomerating Continua Min | Max S Identified | Associated
step index | index group category
1 W-G 14 21 20 A Glass
2 G-M 2 9 35 A Glass
3 W-G 13 21 9 A Glass
4 G-M 2 12 11 A Glass
5 W-M 9 12 8 B Metal
6 G-M 10 13 4 B Metal
7 W-M 10 21 52 B Metal
8 G-M 11 21 50 B Metal
9 W-M 2 10 23 C Wood
10 W-G 2 17 62 C Wood
11 W-M 4 11 12 C Wood
12 W-G 9 19 6 C Wood

presents the simplified diagram of agglomeration obtained by hierarchical cluster anal-
ysis. The agglomeration procedure first identifies a group denoted A (from step 1 to 4)
to which we associated the Glass category, because Glass is the common element of the
first 4 agglomerating steps. From the relative position between sounds in the perceptive
space, Glass thus constitutes the most easily identifiable category. The procedure iden-
tifies a second group denoted B (from step 5 to 8) to which we associated the Metal
category. Finally, the third group C (from step 9 to 12) was associated with the Wood
category. Wood thus constitutes the material category which is most difficult to iden-
tify. Interestingly, for most agglomerating steps (except for steps 5 and 6), the clustering
procedure identified groups of sounds (A, B or C) located at the extreme of continua
since the Min or Max index corresponds to an extreme position of the continua (i.e.,
position 2 or 21) or to a position close to an extreme (i.e., 4 or 17). This procedure is
relevant from a perceptual point of view since it means that sets of typical sounds were
located at the extreme of the continua.

Then, the values of “Min” and “Max” indices in Table 3] were used as far as possible
to define sound indices delimiting categories. As an example, the step 2 revealed an
agglomerate from index 2 (beginning of the Glass agglomerate) to 9 (end of the Glass
agglomerate approaching Metal) associated to Glass category. In this case, the retained
index delimiting the Glass category along Glass-Metal continua is 9. This process is
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Table 4. Indices delimiting categories for each type of continua. The indices from steps linked
with symbol - mark the membership to an agglomerate in an intermediate zone. The mark X
indicates the inconsistency in the agglomerating step 12.

Transition

Indices from steps

Indices delimiting categories

Glass-Metal

Wood-Metal
Wood-Glass

9,12,10-13, 11
9-12, 10, 10, 11
14,13,17, X

{9-13}
{9-12}
{13-17}

Table 5. Percentages of responses in each category (Wood, Metal or Glass) for sounds located
at the indices delimiting the categories for the 5 different continua. Sounds are denoted G;-M;-
K, W;-M;-K and W;-G;-K for the i*" continua with K the index along the continua (09 or 13
for Glass-Metal, 09 or 12 for Wood-Metal and 13 or 17 for Wood-Glass transition). Averaged
percentage values (Mean) across the 5 continua of a given transition in the associated categories
(e.g., mean values of G and M columns for Glass-Metal transition) and bilateral errors (Error)
associated to the mean estimation with an unknown variance (significance level of .05).

GLASS-METAL WOOD-METAL WOOD-GLASS
W IM]|G W | M| G W | M| G
G1-M:-09 8 36 | 56 || Wi-M;-09 | 44 | 40 | 16 || Wi-G;-13 | 28 | 12 | 60
G2-M2-09 | O | 28 | 72 || W2-M2-09 | 96 | 4 0 W2-G2-13 | 92 | O 8
G3-M3-09 | 0 | 20 | 80 || W3-M3-09 | 12 | 68 | 20 || W3-G3-13 | 96 | O 0
G4-My-09 | O | 36 | 64 || Wa-My-09 | 16 | 52 | 32 || Wy-Gy-13 | 64 8 28
Gs5-M5-09 | O | 24 | 76 || W5-M5-09 | 20 | 60 | 20 || W5-Gs-13 | 72 | 4 | 24
Mean 70 38 70
Error 12 43 34
W | M| G W | |M|G W IM|G
G1-M;-13 0|9 | 4 Wi-M;-12 | 12 | 80 Wi1-G:-17 | 4 16 | 80
G2-M2-13 0|9 | 4 Wa-M2-12 | 20 | 52 | 28 || W2-G2-17 | 68 4 | 28
G3-M3-13 0 | 72 | 28 || W3-Ms-12 8 922 | 0 W3-Gs-17 | 60 | 4 | 36
G4-My-13 0|9 | 4 W4-My-12 | 4 | 80 | 16 || Wa-Gy-17 | 24 | 4 | 72
Gs5-M5-13 0O | 8 | 12 || Ws-Ms-12 | 4 | 92| O Ws5-Gs-17 | 12 | 4 | 80
Mean 90 79 59
Error 13 20 31

repeated for all the agglomerates of each step. The agglomerating step 12 is withdrawn
from the analysis since the indices of the agglomerate (i.e., 9-19 on Wood-Glass con-
tinua) delimit a zone on the Glass side, that is incoherent with the identified group (C)
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Table 6. Criterion of category membership according for each transition

Transition Criterion

Glass if G > 70%
Glass-Metal

Metal if M > 90%

Wood if W > 38%
Metal if M > 79%

Wood-Metal

Wood if W > 70%
Wood-Glass

Glass if G >59%

and associated category (Wood). The indices delimiting categories (and consequently
delimiting intermediate zones) are defined for each type of continua in Table 4l For in-
stance, along the Glass-Metal continua, the Glass category goes until index 9 and the
Metal category starts from index 13.

Then, from these indices delimiting categories, we define the criteria of category
membership as a threshold of percentage of responses in a category for each type of
transition. In practice, we define these criteria as equal to the average of the percentages
of responses obtained for sounds at the indices defined in Table [ across the 5 differ-
ent continua of a given transition. The calculation of these average values is shown in
Table Al The membership criteria for each transition are summarized in Table [6l Note
that all criteria are superior to 50% except for the Wood membership criterion in the
Wood-Metal continua (i.e., 38% = 43%). This value is not accurate from a perceptual
point of view since it would lead to define the sounds (issued from Wood-Metal con-
tinua) that were categorized in the Wood category by only 38% of participants as typical
Wood sounds (actually, these sounds were more often classified in the Metal category,
see Table[3). This incoherency can be explained by the fact that the average calculation
is based on a small number of values (average on 5 values). In order to minimize the
uncertainty associated with these membership criteria (revealed by large intervals of
confidence, see error values in Table [3) that directly influences the construction and the
validation of predictive models, we determine an unique category membership criterion
equal to the average value of all the membership criteria, i.e., 67.6% + 9.9% (N=30).
For the sake of simplicity, we defined a criterion of category membership equal to 70%
(value that belongs to the interval of confidence) for this current study.

4 Relationship between Acoustic Descriptors and Sound
Categories
4.1 Acoustic Descriptors

To characterize sounds from an acoustic point of view, we considered the following
sound descriptors known to be relevant for timbre perception and material
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identification: attack time AT, spectral centroid CGS, spectral bandwidth SB, spectral
flux SF, roughness R and normalized sound decay «.

The attack time AT is defined as the time necessary for the signal energy to raise
from 10% to 90% of the maximum amplitude of the signal. The spectral centroid CGS
and the spectral bandwidth SB were defined by:

) > wlk) | 4(k) | 1 > 4(k) | (w(k) — 27 x CGS)?
cGS=—+__  .gp=_— |k (1)
2r N a(k) | 2m > 18(k) |
k k

where w and § respectively represent the frequency and the Fourier transform of the
signal. The spectral flux SF is a spectro-temporal timbre descriptor quantifying the time
evolution of the spectrum. The definition presented in [12]] was chosen. The roughness
R of a sound is commonly associated to the presence of several frequency components
within the limits of a critical band. In particular, R is closely linked to the concept of
consonance/dissonance [13]]. The definition presented in [14] was chosen.

Finally, the sound decay quantifies the global amplitude decrease of the temporal
signal and is directly correlated to the damping. Since the damping is a fundamental
cue for material perception [11/15/16/17]], the sound decay is assumed to be a rele-
vant acoustic descriptor for our sounds. In practice, the sound decay is estimated from
the slope of the logarithm of the envelope of the temporal signal. Nevertheless, since the
damping is frequency dependent, this decrease depends on the spectral content of the
sound. In our case, typical sounds present a high variability of spectral content across
material categories. Consequently, to allow comparisons between sound decay values,
we further chose to consider a sound decay that was normalized with respect to a refer-
ence that takes into account the spectral localization of the energy, i.e., the CGS value.

4.2 Binary Logistic Regression Analysis

From classifications obtained from perceptual tests, we aim at estimating the member-
ship of a sound in a material category starting from the calculation of the 6 acoustic
descriptors presented in the previous section: { AT, CGS, SB, SE, R, a}.

In our case, the dependent variables are qualitative; they represent the membership
(True) or the non membership (False) of the category. In order to build statistical models
to estimate the membership to a category, the binary logistic regression method is used.
The associated method of multinomial logistic regression is not adapted to the problem
because the best estimators can be different from one category to another.

One statistical model of binary logistic regression for each material category (Wood,
Metal and Glass) are then built based on the acoustic descriptors. The problem of
collinear parameters is overcome by a forward stepwise regression. Logistic regres-
sion allows one to predict a discrete outcome, such as group membership, from a set of
variables that may be continuous, discrete, dichotomous, or a mixture of any of these.
The dependent variable in logistic regression is usually dichotomous, that is, the de-
pendent variable can take the value 1 (True) with a probability of success m, or the
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value O (False). This type of variable is called a Bernoulli (or binary) variable. Logis-
tic regression makes no assumption about the distribution of the independent variables.
They do not have to be normally distributed, linearly related or of equal variance within
each group. The relationship between the predictors and response variables is not a lin-
ear function in logistic regression. The logistic regression function which is the logit
transformation of 7 is used:

eLcat(z)
m(x)=PY =1/X =2) = 1o clonl )
with
Leat(x) = Bo+ Y Bimi 3)

The function L (x) was calibrated and validated for each category (Cat={Wood,
Metal, Glass}). Because we are dealing with sound continua, a segmented cross val-
idation procedure was used. The validation set was built by selecting 1 of 3 sounds
(corresponding to a set of 67 sounds). The calibration set was composed by the remain-
ing sounds (corresponding to a set of 133 sounds). Note that for a given material model,
the validation and calibration sets were built by excluding sound continua that did not
contain the material. For instance, the Metal category model is not concerned by the 5
sound continua of the transition {Wood-Glass}. For each category, the membership of
sounds corresponded to the set of “typical” sounds that were defined from the results of
the listening test and from a statistical approach (cf. sections 2] and [3). A stepwise se-
lection method was used and the statistical analysis was conducted with SPSS software
(Release 11.0.0, LEAD Technologies).

4.3 Results and Discussion

For each category model, the step summary is given in Table The statistics
Cox & Snell R? and Nagelkerke adjusted R? try to simulate determination coeffi-
cients which, when used in linear regression, give the percentage variation of the de-
pendent variable explained by the model. Because a binary logistical model is used,
the interpretation of R? is not quite the same. In this case, the statistics give an idea
of the strength of the association between the dependent and independent variables
(a pseudo-R? measure).

The results for calibration and validation processes are given in Table [8l Thus, the
predictive models are expressed by the function 7(x) in Eq. @) and L4 () for each
category { Wood, Metal, Glass} is respectively given by:

Lwood(c, CGS, SB) = —38.5 — 196c — 0.00864CG'S + 0.01615 B

Litetar(c, SB) = 14.7 4 3220 — 0.002535 B W
Lciass(SB,CGS, R, o, SF) = 14.33 — 0.0065B + 0.002CGS — 3.22R

+52.69a — 0.001SF
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Table 7. Step summary (Nagelkerke R? adjusted value and the variable entered) of the logistic

regression method for each material category (Wood, Metal, Glass)

Nagelkerke Variable
Category Step 9
R~ adjusted entered
1 .616 @
WOOD 2 .644 CGS
3 .854 SB
1 .637 @
METAL
2 718 SB
1 .086 SB
2 .164 CGS
GLASS 3 .300 R
4 377 @
5 410 SF

Table 8. Classification table for each category (Wood, Metal, Glass) calculated on the calibration
(N=133) and validation (N=67) populations. The cut value is .5.

Calibration ‘ ‘ Validation

~ | Observed Predicted False | True | % correct || False | True | % correct

8 False 78 4 95.1 40 1 97.5

= True § | 43 | 843 4 | 22| 846
Overall % 90.7 | 91.5 91 91 95.6 92.5

| Observed Predicted False | True | % correct || False | True | % correct

é False 50 12 80.6 27 7 79.4

= True 6 65 91.5 1 32 97
Overall % 89.3 | 844 86.5 9.4 | 82 88

» | Observed Predicted False | True | % correct || False | True | % correct

< False ot | 7 | 929 | 4 | 3 | 934

S True 17 | 19 52.8 10 | 10 50
Overall % 842 | 73 82.1 81.1 77 80.3

The logistic regression method revealed that the o parameter was the main predic-
tor for Wood (overall percentage correct equal to 85% at step 1) and Metal (82.7%)
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categories. This result was in line with several studies showing that the damping is an
important acoustic feature for the material perception. Following «, the other important
descriptors revealed by the analyses were related to the spectral content of the sounds
({CGS, SB} for Wood and SB for Metal), meaning that spectral information are also
important to explain material categorization. For the Glass category, the majority of
the descriptors were of equal importance in the classification model (all descriptors
were taken into account except AT). Thus, by contrast with the Wood and Metal cat-
egories, the membership of the Glass category could not be accurately predicted with
few descriptors. Moreover, the most relevant predictors for this category revealed by the
analyses were the spectral descriptors, ({SB, CGS, R}), while the temporal « parameter
which was the main predictor for Wood and Metal only was relegated at the 4th rank.
This may be due to the fact that Glass sounds presented a higher variability in sound
decay values than Wood or Metal sounds. More interestingly, another explanation can
be found in the specificity of the Glass category for which the material perception is
intricately associated to drinking glasses (as everyday life objects). The corresponding
sounds are generally characterized by high pitches (associated to small objects) and
crystal-clear sounds (few spectral components, due to the structure’s characteristics).
Consequently, the discrimination between Glass sounds and the other sound categories
can be explained by the spectral properties of Glass sounds rather than by the damping.

5 Sound Synthesis Perspectives

In addition to sound classification processes, these results are of importance in the con-
text of synthesis control. In particular, we are currently interested in offering an intuitive
control of synthesis models for an easy manipulation of intrinsic sound properties such
as timbre. This aspect is for instance of importance within the Virtual Reality domain.
Indeed, the use of synthesis models can dramatically be improved in “sonification” pro-
cesses which generally deal with the choice of optimal synthesis parameters to control
sounds directly from a verbal description (in our case, directly from the label of the
material category: Wood, Metal or Glass). According to this perspective, we assume
that the acoustic descriptors highlighted in the predictive models would constitute a re-
liable reference. In this section, we propose a discussion on their actual relevancy from
a synthesis point of view.

First, the parameter « (related to the damping) was confirmed as an important pre-
dictor coherent with previous psychoacoustical studies showing that damping is an es-
sential cue for material perception. The parameter o was kept as an accurate control
parameter and was integrated in the control of the percussive synthesizer developed in
our group [18]. Moreover, the determination of typical and non typical sounds on each
sound continuum allowed us to define characteristic domains of parameter range values
for each material category.

In addition to «, the statistical analyses further highlighted CGS and SB as most
relevant parameters in the predictive models. These results are in line with post hoc syn-
thesis experiences which revealed that, in addition to the damping, another parameter
controlling the spectral content of sounds is necessary for a more complete manipula-
tion of the perceived materials. To address this control, we also aim at integrating data



Perception of Impacted Materials: Sound Retrieval and Synthesis Control Perspectives 145

from brain imaging that point out the perceptual/cognitive relevancy of descriptors.
Actually, a separate analysis reflecting the temporal dynamics of the brain processes
observed through electrophysiological data (also collected during the listening tests),
revealed that spectral aspects of sounds may account for the perception and categoriza-
tion of these different categories (see companion article [19]]). This argument supports
the fact that the control of the synthesis model can be accurately improved by adding
control parameters related to spectral characteristics of sounds. Nevertheless, direct ma-
nipulations of the statistically relevant parameters CGS or SB of a given impact sound
do not allow intuitive modifications of the nature of the perceived material. Based on
these considerations, we are currently investigating the possibilities to define a con-
trol space for material categories where the control of spectral characteristics of sounds
should particularly render the typical dissonant aspect of Metal sounds [20].
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