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1CNRS - Laboratoire de Mécanique et d’Acoustique,
31 ch. Joseph Aiguier, Marseille, France

2CNRS - Institut de Neurosciences Cognitives de la Méditerranée,
31 ch. Joseph Aiguier, Marseille, France
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Abstract. The current study is part of a larger project aiming at offer-
ing intuitive mappings of control parameters piloting synthesis models
by semantic descriptions of sounds, i.e. simple verbal labels related to
various feelings, emotions, gestures or motions. Hence, this work is di-
rectly related to the general problem of semiotics of sounds. We here put
a special interest in sounds evoking different perceived motions.
In this paper, the experimental design of the listening tests is described
and the results obtained from behavioural data are discussed. Then a
set of signal descriptors is compared to categories using feature selection
methods. A special interest is given to applications for sound synthesis.
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1 Introduction

In the sound design context, synthesizing sounds from verbal labels related to
various sensations, emotions, gestures or motions is still an open problem. Also
in a musical context, composers want to create or transform sounds by acting on
parameters that are relevant from a perceptual point of view. Indeed, physical
synthesis models often necessitate the manipulation of hundreds of parameters.
Consequently the construction of ”good” sounds is almost impossible if no map-
ping strategy is used. In addition, certain signal models like FM synthesis are
hard to control even after a learning process since the relation between timbre
and synthesis parameters is non-linear. Most approaches, consist in first building
a synthesis model and then addressing the mapping between synthesis param-
eters and control parameters. Indeed, our approach, the so-called ”semiotic”1

approach, consists in building the synthesis model directly from the control pa-
rameters which are relevant from a perceptive/cognitive point of view.
1 the study of signs and symbols, what they mean and how they are used, Cambridge
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This approach leads to the more general issue: understanding how listeners as-
sign meanings to sounds and in particular, determining acoustic features that
convey information.
Semiotics has been studied in several contexts such as music information re-
trieval [22], perception of impact sounds [1], noise annoyance [14], sound design
[13], perception/cognition of romantic music [2]. In particular, in the context of
product quality evaluation U. Jekosch [13] addressed a theoretical framework
based on a general theory of signs and in accordance with Gestalt perception.
She also explains that this approach is particularly relevant in an industrial con-
text.

In this study, a general methodology based on 3 steps is proposed:

– Determination of sound categories;
– Determination of invariants representative of these sound categories;
– Control of synthesis processes based on these invariants (sonification).

Many aspects of sound are concerned by semiotics. Indeed, listening to the
same sound, different listeners might focus on different information carried by
the sound. Conversely, some information can be gathered by only a few listeners.
For example listening to a voice through the telephone, you might detect differ-
ent moods if you are familiar with the speaker or not. Hence, the information
conveyed by sound studied through a semiotic approach should be as indepen-
dent of listeners’ ”history” as possible. This leads to a consideration of only basic
properties of sound sources (e.g. size, material, displacement...) experienced in
everyday listening [6].
As a first attempt to identify signal parameters linked to a sound source property,
we have here focused on the evocation of motion. Motion is a primordial aspect
of the appreciation of music. Indeed, in [5], authors studied the association be-
tween musical parameters and images of motion, and identified important links
between gesture and various parameters such as pitch, loudness and rhythm.

Following the general methodology presented above, the first step consisted
in determining categories of sounds evoking motions by listening tests. For this
purpose, sounds from data banks made by electroacoustic music composers were
collected. Among the large number of samples, we chose sounds which sources
cannot be identified, but which, however, convey a signification. This made it
easier for the subjects to focus on the evocations induced by the sounds,without
being influenced by the identification of sound sources. Indeed in [9], Guastavino
observes that in the case of environmental sounds, listeners process sounds as
semantic labels. The author also indicates that for ”abstracted stimuli”, ob-
tained categories might be more correlated with acoustic features. Conversely,
Schaeffer [21] (and others) assumed that when we listen to a sound, we auto-
matically try to link this experience with a similar one, stored in our memory.
In the case of electroacoustic music, we can for instance predict that listeners
will make comparisons with audio effects used in science fiction movies. This
comment brings us to consider the problem of context. Indeed according to the
ecological approach of perception [7], [6] everyday listening is usually related to



complex events. Besides, we must consider that sound perception is multi-modal.
Listening tasks through headphones or loudspeakers (corresponding to listening
conditions in laboratory) have been studied by Schaeffer [21] through what he
calls the ”acousmatic” approach. Schaeffer explains that this approach permits
to separate auditory and visual information and to make us aware of the fact
that the listening changes over time when we repeatedly listen to a sound. In
our daily-life a lot of information comes from loudspeakers in radio, TV, com-
puters, alarm systems etc. These considerations lead us to the choice of stimuli
from electro-acoustic music composer since they are complex and can refer to
various sound source properties and are well adapted for listening tasks through
headphones.
Synthesized sounds were also included in the sound material to integrate some
assumptions related to the physics of moving sound sources. In practice, the
following physical phenomena were simulated: Doppler effect (known to give the
sensation of a passing source), air absorption (known to be important for the
perceived distance of a source), reverb (known to be important for the perceived
distance or for the sensation of room acoustics) and raise/decay of sound pres-
sure level. We tested if sound transformations corresponding to each of these
physical phenomena simulated independently can evoke specific motions.

To define categories from the collected set of sounds, we conducted 2 cat-
egorization tasks where participants were asked to group sounds as function
of the evoked motions (or displacements). In the first experiment, participants
were allowed to make as many groups as they wanted, whereas, in the second
experiment, they had to group sounds in predefined categories, each of them
being represented by a prototypical sound obtained from the results of the first
experiment. This approach makes it possible to avoid verbal labels [2]. Free cat-
egorization has many advantages (compared to dissemblance tests for example)
in the sense that a lot of stimuli can be tested. It gives simultaneously access to
categories (with verbal descriptions) and corresponding sounds. In addition, no
hypothesis about the existence of continuous perceptual dimensions is needed.
Furthermore, we assumed that in the second task, the high variability of the
results obtained in the first task will be reduced.

The categories of movements obtained from the behavioural data were further
examined in order to identify signal features specific to each category. First,
the analytical properties of each sound were calculated through several signal
descriptors described in section 3. Then, statistical analysis lead to the most
relevant descriptors (signal features) specific to each category of motion.
We finally discuss some perspectives concerning the control of these descriptors
(last step of our methodology).

2 Determination of Sound Categories

2.1 Stimuli



Recorded Sounds We preliminary collected about one thousand samples from
personal data banks belonging to electroacoustic composers of the Music Con-
servatory of Marseille, with their agreement. Sounds were all monophonic with
16-bit 48kHz sampling rate. These samples are essentially dedicated for musical
compositions and are generally used as or after some audio effect transforma-
tions. Among these samples, a selection of 62 sounds was effectuated with re-
spect to different criteria. First, according to the acousmatic listening context,
we avoided caricatured sounds (like sounds used for cartoons) and sounds for
which the sources were easily identifiable. Second, we restricted our selection to
sounds that present a simple morphology (single event) and that last no longer
than 4 seconds. We also cared that sounds should not be dramatically cut from a
longer sample. This point is of importance since it can influence the categoriza-
tion task if used as a strategy of comparison between sounds. Finally, according
to analysis constraints, we aimed at constituting the most heterogeneous sound
panel with respect to timbre, duration and level.

Synthesized Sounds Hypothesis about acoustic information related to a mov-
ing sound source are tested by including additional sounds obtained by trans-
formation of 6 original recorded samples different from the 62 sounds previously
selected. The original samples were first modified to freeze the evolution of signal
parameters by using a phase vocoder freezing technique [19]. Then, we applied
sound transformations corresponding to the following physical phenomena: air
absorption, raise/decay of sound pressure level, reverb and Doppler effect.
Air absorption is simulated by a first order low pass filter with varying cut-off
frequency (from 13-kHz to 30-Hz). The raise/decay phenomenon is simulated by
a geometric 1/r evolution of the sound pressure level, where r is the distance
between the source and the listener. The reverb effect is effectuated by an Olaf
Matthes freeverb MSP object (freeverb is a Schroeder / Moorer reverb model)
without damping, max room size and varying reverb rate. Finally, the Doppler
effect is reproduced with a delay line. For a monochromatic delayed sound source
s(t−Dt) = eiωs(t−Dt) with a time varying delay time Dt, the instantaneous fre-
quency ω and the frequency measured at the listener’s location (Doppler shift)
ωD are given by:

ω = ωs(1− dDt

dt
) ; ωD = ωs(

1 + vls

c

1− vsl

c

) (1)

where vsl and vls are the relative velocities between the source and the lis-
tener. Therefore, for a static listener (vls = 0) and assuming that vsl << c, the
delay time is given by: dDt

dt = −vsl

c . In practice, 4 sounds were constructed to
simulate these 4 physical phenomena independently. In particular, reverb effect
and air absorption are computed for a source approaching the listener with con-
stant speed. The sound pressure level raise/decay and Doppler frequency shift
are computed for a linear uniform movement of a sound source going past a fixed
listener from −50 to 50 meters in 6 seconds. Two sounds were also constructed
(with independent time dilation/compression and level variation) to simulate a



rotating sound source around a listener located close to a 9 meter radius loop
with an angular velocity of 18 tr/min.

2.2 Test 1: Free Classification Task

Twenty-six students (9 females, 17 males) working on the CNRS campus in
Marseille participated in the experiment. They were between 19 and 30 years
old (average 23,5), 19 had music experience (2 also had electroacoustic music
experience).

Procedure

The listening tests were conducted in an audiometric cabin. Participants were
placed in front of an imac computer screen and listened to monophonic sounds
through a Stax 3R202 headphone set under binaural conditions with a SRM310
preamplifier (we used the internal sound card).

The 68 sound samples represented by square symbols, were initially posi-
tioned randomly on the screen. The task consisted in grouping together sounds
evoking the same motion. Participants could listen to sounds and move them
with the mouse as often as they wanted. We did not impose constraints about
the number of categories to make and we insisted on the fact they should avoid
identifying the nature of the sources that produced the sounds.
A training phase was effectuated for the participants to adopt the ecologic lis-
tening and focus their attention on the impression of motion evoked by sounds.
This preliminary test allowed us to check if the participants were able or not to
make abstraction from the sound source identification and if they well under-
stood the instructions.
At the end of the task, participants were asked to describe (by sentences or a
few words) the type of motion they associated with each group they formed on
the screen. They finally wrote their global impression of the test (whether the
task was hard or boring, the choice of sound material, etc ...).

Results

The test lasted from 21 to more than 60 min across participants. Except for
one, all of them were satisfactory about the groups they made. As expected, we
observed a high inter-subject variability in the number of categories. Indeed, par-
ticipants formed in average 8.8 groups (standard deviation: 3.9), but the number
varied from 3 to 21 groups across participants. We noted that six participants
formed groups composed of only one or two sounds. One subject gave up the
test, since no categories had been formed after 45 minutes and the screen was
similar to its initial state.
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Fig. 1. Each sound (labelled with a number from 1 to 68) is linked to another according
to their similarity. Each group of two sounds is linked to the closest until all sounds
are linked together

Definition of the Most Representative Motion Categories

To highlight the most representative categories of evoked motions reflecting the
participants judgement, we matched the results obtained by different (semantic
and statistical) analyses of the behavioural data.
The first analysis was effectuated on the responses to the questionnaire filled by
participants at the end of the listening test. In particular, words used by partici-
pants to describe the groups they formed, were compared across participants. As
assumed, they used different words to describe a same evoked motion. In prac-
tice, groups which were described with similar words (synonyms) are considered
together and we retained the most relevant label (following our own judgement)
for each group.

We excluded complicated expressions or metaphors, which would necessitate
detailed linguistic analysis. Hence, we identified six categories corresponding to
the following motions: “rotate”, “fall down”, “approach”, “pass by”, “go away”
and “go up”. Respectively 69%, 54%, 46%, 46%, 46% and 34% of the participants
proposed these categories. We also extracted sounds corresponding to those cat-
egories according to the number of time they have been cited. Many sounds
belong to different categories at a time since four of the six categories have been
made by less than 50% of the subjects. Despite this, at least one sound appears
more than 70% of the time for each category.
The second analysis was made on the participant’ classifications. The results
were represented by a 68 × 68 similarity matrix where each cell indicates the
percentage of participants that did group together the two sounds. The hier-



archical clustering analysis was conducted on the dissimilarity matrix obtained
by subtracting the similarity matrix from 1. This method consists in linking to-
gether pairs of sounds with respect to their similarity, then linking these pairs
with other pairs until all elements are grouped together. The obtained dendro-
gram is represented on Figure 1.
Finally, the results of the 2 analyses were set side by side to determine our most
representative categories of motion. For that purpose, the similarity matrix was
resorted according to the dendrogram (cf. fig2). It allows highlighting five groups
that match five of the groups defined by semantic analysis of subjects words. For
example the first six elements of the dissimilarity matrix contain the six sounds
which have been cited by more than 50% of the subjects who made the category
called ”pass by”.
Consequently, these five groups which were found both in semantic and cluster
analysis, were defined as the main motion categories for our study. These groups
were reported on the dendrogram of Figure 1.
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Fig. 2. Similarity matrix resorted according to the dendrogram. The grey scale corre-
sponds to percent of time that two sounds are grouped together. Black: 100% White:
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Finally, for each group, we determined a “prototypical” sound representative
of the category as sounds which have been cited at least by 70% of the subjects
and not cited in another category. The five categories of motions are further used
in test 2 as predefined categories.



2.3 Test 2: Restricted Classification Task

Sixteen subjects (6 females, 10 males) participated in this experiment and all
of them participated in the first one (within a break of two weeks between the
tests). Test 2 was conducted in the same experimental conditions than test 1.
The task consisted in classifying the same stimuli into predefined categories of
motion. These predefined categories were deduced from the most representative
ones obtained from test 1. On the graphical interface, the top half of the com-
puter screen was split in five boxes corresponding to these predefined categories.
Sounds to be categorized were randomly located in the bottom half of the screen.
Instead of labelling the predefined categories with a word, we characterized each
of them by the prototypical sound that was defined from the results of test 1.
Participants placed sounds from the bottom of the screen into one of the boxes
as function of evoked motions. They also were allowed to leave sounds that they
judged ambiguous on the bottom of the screen.

Results We computed the percentage of time each sound was sorted in each
category of motion. In each category, sounds were ordered as function of their
occurrence frequency. Thus, we arbitrarily fixed a threshold value at 70% beyond
which sounds are defined as typical for the category2. With such a threshold,
no sounds are representative of the category “approach”, 2 are representative
for “rise”, 5 for “fall down” and “pass by” and 9 for the category ”turn”. In a
further step, this threshold value has to be adjusted according to the number of
sounds needed for the determination of the invariants of each category.
Most participants left some sounds at the bottom of the screen, but 62% an-
swered ”yes” to the question ”Was the number of categories sufficient?”. Only 2
sounds are sorted in no category more than 50% of the time.

2.4 Comparison Test 1/Test 2

Test 2 gives groups that are valid for all the participants opposite to the first
test in which only two groups where valid for more than 50% of the subjects.
70% found that the second test was easier than the first one and the time to
complete the task were considerably lower in the second test (average 19 min for
the second 43 min for the first).
Differences between the subjects’ answers to the first and to the second test are
23% (average of difference for each subject). The consistency between subjects’
answers is not higher in test 2. This is most likely linked to the fact that the
participants focused on different aspects of the sounds and therefore associated
different motions to them. Hence, the same sound can evoke motions such as
rotate, go away and rise at the same time. This shows that even if our sound
selection was supposed to exclude such complex sounds, selection is indubitably
subjective (i.e. depends on researcher’s choice). The second test did not give the
opportunity to associate more than one motion to each sound.
2 see http://www.sensons.cnrs-mrs.fr/CMMR07_semiotique/ for sound examples



2.5 Physical Considerations

The two sounds simulating the Doppler effect and raise/decay phenomena for a
linear movement were not categorized together. Indeed, the second was typical
for the category ”pass by” whereas the first was not sorted in this category (same
comment for rotating sound source simulation). Indeed, according to Lufti & al.
[15], the most significant cues for the perception of displacement of moderate
velocity (10m/s) are intensity and inter-aural time difference. For high velocity
displacements, the most significant cue is related to the perception of frequency
shift due to the Doppler effect. Hence, cues used to perceive a source displace-
ment seem to differ as function of the variation range of the velocity. To go
further, it is important to see that such transformations are not always efficient
to give an impression of motion. There is another example in the category ”pass
by”, where we point out a sound with increasing centroid. This variation is in
opposition to low pass filtering due to air absorption (and also to pitch shift
due to Doppler effects) for a going away sound source, but 72% of the subjects
described this displacement to be approaching and then going away.

3 Determination of Relevant Signal Descriptors of
Categories

The listening tests allowed us to determine the 5 most representative categories
of motion (“approach”, “rise”, “fall down”, “pass by” and ”turn” ) and a set of
associated typical sounds. In this section, we aim at determining the acoustic
descriptors that are relevant to characterize each sound category. The problem
to be solved here is quite analogous to automatic music classification in the sense
that we want to find descriptors that can explain classification done by listeners.
The field of music information retrieval gives lots of different answers to this
problem ( for example [4], [12]).
Most researches within automatic classification describe the same generic prob-
lems:

– Select the descriptors among thousand of possible
– Relevant criteria for evaluation of descriptors
– Robustness of model (which can be validated on other sound databases)

Often, the criteria are based on minimization between predictions of the model
and experimental values. For example, the database is often split in two parts,
the first one is used to build the model and the second for the evaluation. See
[22] for a detailed analysis and complete overview of such problems.

It is important to keep in mind that we want to conduct our study while
conserving as far as possible a general view of all the problems related to the
semiotics of sounds in the context of synthesis. Afterwards we will be able to
optimize our methodology. Indeed, as a first step, we focus on the determination
of most relevant descriptors for each category instead of building a predictive



model. Hence, with the results of listening tests in mind we can assert to build
a model for which the validity is correlated with the number of data (between 4
and 8 among 68 sounds for each category).

3.1 Signal Descriptors

As Pachet and Roy [20] discuss, there are two different ways of selecting features:
“by hand” and systematic selection. “By hand” means arbitrary selection of fea-
tures according to common sense and systematic means algorithmic selection
with no a priori. Our approach consists in selecting some well-known descriptors
without assumption and building some others that seem to be relevant, and fi-
nally find a criterion to select the most relevant.
In most studies about timbre, the authors have developed signal descriptors to
fit their perceptual dimension. Such descriptors are generally specific to musical
instrument sounds, that is to say for quasi-harmonic spectra (for example in
[8]). In our case, an important part of the ”corpus” is composed of noisy and
non-stationary sounds. Hence we cannot use traditional auditory models to take
into account loudness and masking.
In this study, we focused on a dynamic problem since the evoked movement is
linked to a temporal evolution of the sound. For this reason we extend our anal-
ysis to descriptors that would quantify these temporal behaviours.

To characterize our sounds from an acoustic point of view, we calculated
some well-known descriptors (spectral centroid, spectral spread, spectral varia-
tion, energy envelope, temporal centroid and signal duration). Since most sounds
contain stochastic contributions, the spectral descriptors are calculated from the
power spectrum density (PSD). Those descriptors are calculated with a frame
based method (Hanning windows of 2048 samples with 50% overlapping between
two successive frames).

Since we aim at characterizing the evolutional aspect of the sounds and make
these evolutions comparable across sounds, we reduce time dependent descrip-
tors to scalars. Hence we compute average, standard deviation, monotonousness
and variation rate which are described below.

Monotonousness is defined as

Mn =
1
N

N∑
n=1

sign
(
va′(n)

)
(2)

where va′(n) is a derivative of a discrete variable va(n) of length N . Hence
Mn ≈ 1 means an increasing curve (resp. decreasing for −1) and oscillating or
horizontal if Mn ≈ 0. Monotonousness describes both curve variation sign and
curve flatness.



Variation rate is defined as :

V r =
1

N − 1

N−1∑
n=1

abs
(
sign

(
va′(n+ 1)

)
− sign

(
va′(n)

))
(3)

Thus this is the zero crossing-rate of signal derivative, which is correlated with
the second order moment. It makes it possible to characterize smoothness of the
curve independently from global evolution (as opposed to monotonousness).

Spectral Centroid Spectral centroid is one of the most known and used de-
scriptors. This measure of the gravity center of the spectrum is closely related to
the brightness of a sound. We used the definition proposed by Grey and Gordon
[8]:

Sc =
K∑

k=1

kck
λ+

∑
ck

where ck are coefficients of discrete PSD computed on frequency k and λ is a
regulation parameter.

Spectral Spread is a measure of the spread of a spectrum around its mean
value and can be calculated through the second order moment of the spectral
centroid. From the calculation of Sc, we compute the equivalent of the second
order moment (definition from Peeters [18]):

Ss =

√√√√√√√
∑

k

(k − Sc)2ck∑
k

ck

Spectral variation (or Spectral Flux) is a measure of the time evolution of
the spectrum and is defined by Peeters [18]

Sv(n) = 1−

∑
k

c(n− 1, k)× a(n, k)√∑
k

c(n− 1, k)2
√∑

k

c(n, k)2
(4)

where c(n, k) is PSD of the signal computed at the nth frame.

Amplitude Envelope The envelope A(n) is calculated by first computing the
Hilbert transform H of the temporal signal and then by applying to its modu-
lus, a low pass filtering (second order Butterworth filter) with cut-off frequency



fc. This filter determines the time scale for the energy variation. Fluctuation
strength [24] is defined for amplitude modulations under 20Hz, and we therefore
use this value as cut-off frequency to get a measure of the variations in this
domain.

Temporal Centroid is the energy envelope centroid from definition of [18]
(but normalized by signal duration):

Tc =
1
N

n=N∑
n=1

n×A(n)

N∑
n=1

A(n)

(5)

Characterization of Amplitude Modulation The physics of moving sources
states that periodicity is a fundamental characteristic of rotating sources. Thus
we added to our set, descriptors that characterize amplitude modulation taking
into account some specificities.
Most methods that estimate periodicity are based on the autocorrelation, which
is also the case for the algorithm presented here. We compute the autocorrelation
of the temporal signal. In our case, we rather consider the autocorrelation on
the amplitude envelope A(n) as defined previously from which some ”static”
components are removed. In practice, a linear or quadratic interpolation was
estimated from the autocorrelation and subtracted from it. The calculation of the
autocorrelation on the envelope (instead of directly on the temporal signal) allow
focusing on the slowest periodicities contained in the signal. The periodicity is
quantified by calculating the Fourier transform of this adjusted autocorrelation.
Then we detect the most prominent peaks, taking into account the peaks’ width.
Thus, wide peaks are excluded (with arbitrary threshold) since they do not
correspond to a detectable modulation. Actually, the threshold corresponds to a
width of 5Hz from 75% of the component energy (cf. figure3). We then extract
the frequencies and amplitudes of the two highest peaks.
In order to characterize variations in the amplitude modulation, we also extract
the number of peaks above the energy average in the considered bandwidth (0-
20Hz). Indeed, for variations of the modulation frequency, the autocorrelation
”spectrum” contains more peaks and the domain containing peaks characterize
the modulation boundary.

Characterization of Level Variation Another fundamental characteristic of
signals given by the physics of moving sources is the variation of loudness within
a time interval corresponding to the length of the sound. For example, this is
particularly important as a distance cue for low speed moving source as shown
in [15].
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To characterize this level variation, we detect the maximum of the energy enve-
lope and calculate a linear interpolation of the logarithm of the envelope from
the beginning of the signal to its maximum value and further from the maximum
value to the end. The signal descriptors characterizing the amplitude variation
are defined from this interpolation process (Figure 4). They correspond to the
slopes of the two curves, α1 and α2, and to the envelope fluctuations around
these two curves, Err1 and Err2 (in practice, these fluctuations are quantified
by the interpolation quadratic error). Even for highly chaotic sounds, these pa-
rameters describe a reliable evolution of the sound level and only in a few cases
the interpolation was impossible to calculate.

3.2 Evaluation of Descriptors

The 32 signal descriptors defined in the previous section were computed for each
sound. The abbreviations chosen for these descriptors are listed in Appendix A.
Note that in some cases, the computation leads to aberrant values, which do not
reflect the actual sound behaviour. For instance, the calculation of periodicity
for sounds, which do not contain cyclic behaviours, would be inaccurate. In such
cases, we arbitrarily fixed these meaningless values to 0.
We further aim at determining the most relevant descriptors for each sound cat-
egory defined previously. This issue can be linked to the one addressed in the
field of ”data mining” and particularly ”feature selection” research. Indeed, fea-
ture selection methods aim at optimizing prediction models based on the most
explicative parameters. Consequently, they lead to reduce an initial database to
its most relevant elements without reducing the performance of the prediction
models. This selection is based on criteria which are different across methods
and the relevance of features is highly dependent on the definition given to rel-
evance. Hence, a general criterion is: If the exclusion of a feature from the data
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set involves a decrease in the learning model performance, then the excluded
feature is defined as relevant. For instance, Blum and Langley [3] give five defi-
nitions for ”relevant features” and we chose the more ”physical” one, which can
be summarized as: a relevant descriptor permits differentiation of two different
observations (definition 1 in [3]: Relevant to the target).

Choice of the Method: In this study, we do not aim at defining a model which
explains sound categories. Indeed, as discussed in section 3 (introduction), model
validity depends on the size of the data bank and confidence in categories. In-
deed, the set of typical sounds for each category are unequal in terms of number
of samples and of portion of subjects that defined them as typical. Furthermore,
no perceptual or physical consideration allows us to settle between linear regres-
sion and non-linear methods (like regression tree). Such consideration prevents
us from building a model. Thus we will use feature selection algorithms that are
not linked to a machine learning method (the so called filter in opposition with
wrappers) to determine the most relevant descriptors for each sound category.
In particular, the purpose is to build a subset of non-correlated descriptors (to
reduce the feature set). In our case, a lot of descriptors are highly correlated, but
this can be inline with our definition of relevance. Moreover, from a ”physical”
point of view, correlations between features can lead to interesting results.
For instance, we can consider correlation between features and classes or con-
sider signal descriptors as statistical distributions, which can be compared with



observations (categories).

Many filter methods are available and the results obtained with these vari-
ous methods can be extremely different. For example, Herrera et al. (2002) [12]
compared two different methods3 on categories of drum sounds and showed that
for each category, only one or two features coincided. This difference is due to
the fact that one method considers a subset of features and compares results
obtained for each subset of a given size, while the other considers each feature
independently (and does not consider correlation between features). Otherwise,
some methods aim at determining feature combinations (not only linear) that
can be more ”relevant” than independent features. As discussed in [10], ”Two
variables that are useless by themselves can be useful together”.
For methods necessitating discrete variables, continuous variables are trans-
formed into binary values with an optimized threshold defined from observations.
This transformation is useful since different perceptual attributes correspond to
different ranges of values of a same continuous physical variable. The borders
(threshold values) are generally determined from discrimination tasks. For ex-
ample, psychoacousticians define both fluctuation strength and roughness from
the temporal variations of loudness. Fluctuation strength is defined under 20Hz
and roughness between 20Hz and 200Hz. Methods that consider discrete values
for a feature match this observation and particularly with Fayyad and Irani’s
method4 which takes into account categorization data to perform continuous
to discrete transformations. Nevertheless, such methods imply that features are
considered independently.
In practice the discretization process is based on binary values and implies to
split descriptor values into distinct categories. In our case, the sound categories
were defined from a consensus across subjects and consequently the perception
is assumed to be non categorical. Considering an intermediate domain between
2 categories would be intuitively accurate (i.e. values under threshold 1, between
threshold 1 and 1, above threshold 2).

To summarize, the literature offers a large variety of statistical methods. In
our case, we first consider discretization and validity according to the Fisher
test5 and the equivalent for continuous data, the so called ”Fisher Filtering”
method implemented in R. Rakotomalala’s free software TANAGRA6 (see [10]
and [3] for more details on such methods).

Results and Discussion The most relevant signal descriptors highlighted by
the 2 methods are presented in Tab. 1 (for discretization method) and in Tab.

3 Correlation based Feature Selection (CFS) and RefiefF [11]
4 (1993) cited by [11]
5 Due to the small number of sounds in each category (from 12 for ”rotate” to 8 for

”fall”), Fisher Test is more adapted than Chi2 to compare categories and features.
6 http://eric.univ-lyon2.fr/ ricco/tanagra/fr/tanagra.html



2 (for the fisher filtering method). To test robustness of both methods, we also
added to the feature set, a random variable between 0 and 1 attributed to each
sound; The results showed that this variable has never been highlighted by the
2 methods and consequently, confirm the confidence in the one presented in this
section.

Table 1. Feature discretized according to category and corresponding thresold. [+]
means feature value of sound in the category is above the cut-off ([-] under). Abbrevi-
ations are described in appendix A

Category ”Rotate” Category: ”Pass by” Category: ”Fall down”
Feature Cut-off Feature Cut-off Feature Cut-off

cgs std 224 (Hz) [-] Npeak 3,5 [-] t2 0,875[-]
a0/a1 0,1 [+] Err2 0,26 [-] ls 0,94[-]
f1 0,69 (Hz) [-] α1 6,1 (db/s) [+]
a1 0,06 [+] t1 0,36(s) [-]

f0/f1 0,05 [+]

Table 2. Signal descriptors and corresponding F-value and P-value obtained by ”Fisher
filtering” feature selection method

”Rotate” ”Pass by” ”Fall down”
feature F P-Value feature F P-Value feature F P-Value

a1 19,94 0,000076 Err2 8,03 0,00748 ls 14,60 0,0005
Npeak 8,32 0,00658 Npeak 7,54 0,00934 Err1 14,38 0,00055
f0/f1 8,23 0,00684 Err1 6,31 0,01663 a1 9,98 0,0032

En mn 4 0,0531 t1 9,67 0,0036

As expected, results given by ”Fisher Filtering” are coherent with the dis-
cretization method. Moreover, they are also coherent with our assumptions. We
now discuss results obtained for the motion categories ”Rotate”, ”Pass by” and
”Fall down”. In particular, we focus on the descriptors which have been high-
lighted by both methods in each category. For the category ”Approach”, no
significant descriptors were found by both methods. For the category ”Rise”,
only the discretization method highlighted the variation rate of the energy en-
velope (En vr) with no statistical criterion for the validity of this descriptor
regarding to the category. Note that categories ”Rise” and ”Approach” are the
ones with the smallest amount of representative sounds (resp. 4 and 6 sounds
selected by more than 50% of the subjects).



Category ”Rotate” From a physical point of view, the parameter a1 (ampli-
tude of highest peak in the adjusted autocorrelation) corresponds to the most
meaningful descriptors since it quantifies the amplitude modulation rate. Note
that this parameter is the most relevant (and the only significant) according to
Fisher F criterion. Discretization also pointed out this feature with the infor-
mation that this modulation rate must be over 0,06 (in arbitrary units). The
ratio of frequency modulation (f0/f1) was also highlighted and indicates that 2
amplitude modulation components are necessary to completely evoke a rotating
motion (with no proof according to F value).

Category ”Pass by” The relevancy of the Err2 feature can be explained
from physical considerations related to the raise/decay phenomena. Indeed, the
decreasing part of the amplitude envelope of the sounds should be log-linear
to characterize the ”pass by” motion (0.26 [-]in Table1). Err2 also quantifies
smoothness (low fluctuations) of the amplitude envelope, which can explain why
it is not significant according to the F criterion (but more correlated with the
category). On the contrary, the interpretation of the Npeak feature is more
speculative. For the moment, no physical or signal considerations made on the
category can be directly related to this parameter.

Category ”Fall down” By preliminary listening to the sounds representative
of this category, we noticed that they mainly correspond to short impact sounds.
This observation is inline with the characteristic of the signal features highlighted
by statistical analysis, i.e. short sounds (signal length ls with 0.94 [-]) with an
abrupt attack (reflected by parameter t1 with 0.36 [-]).
These results are of interest from a cognitive point of view since we can deduce
that fundamental cues inducing the evocation of falling down motion are not
directly contained in sounds. In particular, we can assume that participants
associated this motion to sounds by imagining the motion which could have
caused the resulting sounds (for instance, striking the floor at the end of its
trajectory).
This particular example illustrates the necessity of taking into account some
cognitive assumptions additionally to physical considerations.

4 Conclusion and Perspectives

In this paper, we aimed at proposing a global methodology for the design of
synthesis tools controlled by high-level parameters, such as mental evocations
induced by sounds. Through the particular case of the evocation of motions,
this study addressed the general problem of semiotics of sounds for synthesis
applications.
The proposed methodology addressed 3 main questions: What are the different
categories of motion? What are the common acoustic features of sounds in a
category? How to synthesize sounds that evoke specific motions?



First, to determine these different sound categories, we conducted a two-part
listening test. The choice of the stimuli was a crucial issue since it constituted
the starting point of our methodology. To help subjects to focus on ”sensations”
evoked by sounds and to avoid bias introduced by the identification of the sound
source, we gathered ”concrete” samples issued from electro-acoustic music com-
positions. The first part of the listening test consisted in a free categorization
task in which listeners were asked to group sounds as a function of the evoked mo-
tions. Groups were quite consistent across subjects and the most representative
ones were used in the second part of the listening test, as predefined categories
in a constrained categorization task. The predefined categories were represented
by prototypical sounds (defined by the previous free categorization test) instead
of labels. In this manner, the prototypical sounds imposed an acoustic reference
of a given motion category and consequently, listeners assumed to base their
strategy mainly on ”analytical” properties of sounds. Thus, results allowed de-
termining a set of representative sounds for each category of motion.
Concerning the determination of acoustic features characterizing each sound
category, we investigated most of well-known signal descriptors (as defined in
mpeg7 standard [17] for example). In particular, according to the wide variety
of our sounds (noisiness, complex temporal evolution, different durations...), we
compared their evolution by calculating a scalar estimated from time dependent
descriptor values (calculation based on successive frames for spectral descrip-
tors). We determined the most relevant descriptors for each category by using
the filter feature selection method. This method was chosen according to the
validity of statistical tests and considerations on the perception of sounds, the
results constitute a first step towards the determination of the so-called acoustic
invariants, for which different statistical methods have to be examined among
hundreds of available methods.
The third main question concerning the building of synthesis tools is still in
progress. In particular, the calibration (definition of a valid range of values) of
these most relevant descriptors and their control (sound manipulation from the
variation of synthesis parameters) are currently being investigated.
Even if many interesting perspectives have been highlighted, we completed the
first two steps of our general methodology. Now, we can address with precise
questions, each concerned research field such as music, physics, data-mining and
cognitive sciences.
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A Appendix: Abbreviation used for signal descriptors

cgs std: Standard deviation of spectral centroid
ls: signal length
f1: second amplitude modulation frequency
f0/f1: ratio of amplitude modulation frequency
a0: amplitude modulation ”rate” (first component)
a1: amplitude modulation ”rate” (second component)
a0/a1: ratio of amplitude modulation ”rates”
Npeak: number of peaks in Fourier transform amplitude envelope autocorrela-
tion between 0 and 20 Hz
t1: time from beginning to max energy point (cf. figure 4)
t2: time from max energy point to end (cf. figure 4)
Err1: Quadratic error for linear interpolation of logarithm of amplitude envelope
from beginning to max energy point of signal.
Err2: idem from max energy point to end of signal
α1: slope of linear interpolation of logarithm of amplitude envelope from begin-
ning to max energy point of signal.(cf. figure 4)
α2: slope of linear interpolation of logarithm of amplitude envelope from max
energy point to end of signal.(cf. figure 4)
En vr: Variation rate of energy envelope
En mn: Energy monotonousness


