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Abstract. In this study, we focused on the establishment of perceptual
categories of shapes and materials associated with everyday objects, in
the perspective of setting up high-level controls in an impact sound syn-
thesizer. For that purpose, impact sounds were recorded from everyday
objects covering various physical attributes, i.e., seven types of materials
(Metal, Wood, Plastic, Glass, Stone, Ceramic and Cardboard) and five
types of shapes (Solid 1D, Hollow 1D, 2D, Solid 3D and Hollow 3D), and
resynthesized with signal parameters estimated from a high-resolution
method (ESPRIT). Listening tests were conducted on these sounds to
define perceptual categories and evaluate their relevance. Perspectives in
terms of their acoustic description are finally discussed.
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1 Introduction

For sound design and virtual reality, the challenge now lies in making sound syn-
thesis tools accessible to all, offering coherence with complex virtual scenes, and
compatible with real time constraints. The design of intuitive control strategies,
through the use of high-level descriptors, can meet this demand.

The current study is part of the development of an impact sound synthe-
sizer for which a high-level control of the perceived shape and material of the
object is desired [1]. This issue requires knowledge on acoustical properties of
sounds that convey relevant information on the source and how they are per-
ceived. Previous studies have investigated the auditory perception of physical
attributes such as shape, hollowness or material. In particular, several studies
can be found on the dimensions of objects, such as bars [2], [3], rods [4] or spheres
[5]. They demonstrated that height-width ratios and lengths could be recovered
from sounds with reliable accuracy. In terms of cavity, Lutfi [6] and Rocchesso
[7] showed that the perception of hollowness can reasonably be identified from a
certain size threshold. The pitch and brightness-related descriptors were found
to be relevant for listeners. In terms of shapes, Kunkler-Peck and Turvey [§]
investigated the participants’ ability to identify circular, triangular or squared
plates made of various materials. Performance was almost perfect with only a
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secondary tendency to associate materials with particular shapes. By contrast,
Tucker et al. [9] and Giordano [10] found that shape recognition abilities were
limited and strongly depended on the material composition. Lastly, the auditory
perception of materials was investigated in [11], [12] and [13]. Two gross mate-
rial categories (wood-plastic, glass-steel) emerged from these studies, where the
metal was more often better identified. The damping parameter was found to be
one of the main acoustic cues for listeners [14].

Given the perceptual sensitivity of human being to some physical attributes of
objects, the challenge now lies in the establishment of representative perceptual
categories related to the sound sources as well as in their acoustic description.
In our study, we evaluate the perceptual attributes of everyday objects. Based
on previous studies, we aim at defining perceptual categories of shapes and also
completing and refining the perceptual categories of materials established in [15].

For this purpose, we constituted a sound data bank by recording impacted
items recovering a large set of physical categories of material and shape, con-
sidered as representative of the everyday life. Hence by recovering a large set
of physical attributes, we assumed that a large variety of perceptual categories
would be obtained after the listening tests. The recorded sounds were analyzed
with a high-resolution method (ESPRIT) and resynthesized on the basis of the
estimated parameters. Then, a series of listening tests were conducted to deter-
mine the main perceptual categories of material and shape. Finally, in the aim
of characterizing the sounds belonging to these perceptual categories from an
acoustic point of view, perspectives on acoustic descriptors are discussed.

2 Sound Data Bank from Everyday Objects

Lutfi has asked in [6]: "How might a listener determine from sound that a class
of resonant objects is, say, hollow or is made of metal despite differences in the
size or shape of individual exemplars or the manner in which they are driven to
vibrate ?” The database we describe in this section is actually intended to enable
us to answer this question. Here we first present the different objects that have
been impacted and the methodology adopted. In a second part, we discuss the
high-resolution ESPRIT method that allowed us to estimate the parameters of
the recorded sounds and then make their synthesis.

2.1 The Sounding Objects

It is important to remember that the perceptual category that matches a given
sound can be totally different from the real category associated with the object
that produced the sound. Beyond this consideration, based on previous studies
[17], we considered that the fact of covering various physical categories of objects
would maximize the variety of perceptual categories obtained after the listening
tests. The categorization presented in Figure 1 has therefore emerged as the
most exhaustive according to the existing objects encountered in our everyday
life.
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What Are the Categories 7 Seven types of materials are investigated: Metal,
Wood, Plastic, Glass, Stone, Ceramic and Cardboard. Note that each category is
broadly defined. For example, the Metal category includes: iron, steel, aluminum,
bronze, alloys, etc. The Wood category includes: beech, fir, pine, chipboard, etc.
And the Plastic category includes objects made of different types of polymers
(PVC, PET, PP, PS, etc.). Since our previous works on the impact sound syn-
thesizer [15], the categories Plastic, Stone, Ceramic and Cardboard are so new.

Five types of shapes are investigated: Solid 1D, Hollow 1D, 2D, Solid 3D
and Hollow 3D. The 1D category denotes objects for which one dimension is
much larger than the two others (e.g., rods, beams, bars, tubes, pipes, etc.). The
2D category denotes objects for which two dimensions are of the same order of
magnitude compared to the third one (e.g., plates, slabs, sheets, etc.). The 3D
category refers to three-dimensional objects for which the three dimensions are
of the same order of magnitude (e.g., jars, bottles, bowls, boxes, balls, etc.). The
presence or absence of cavity is also considered for 1D and 3D objects and is
denoted by the label Hollow (e.g., bell) or Solid (e.g., rod) respectively.

As a summary, 35 categories of objects’ attributes have been defined to con-
stitute the complete sound data bank.

2D

1D Solid

1D Hollow

Fig. 1. The physical categories of everyday objects : 7 types of materials covering 5
types of shapes, including 2 types of cavities

Procedure In practice, 126 objects that match at best the 35 previous cate-
gories were collected. Note that for some categories, it was not possible to find
corresponding objects because of the unusual physical characteristics (e.g., Hol-
low 1D objects made of stone). However, this constraint did not fit in conflict
with our wish to study representative everyday objects. Since we aimed at col-
lecting 10 sounds by category, the goal of this part of the work was to record
about 350 impact sounds.
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The recording session was made in an anechoic chamber. The objects were
placed on a rigid support and stabilized with hooks and foams (pictures available
at [22]). They were then impacted with a Briiel & Kjaer 8202 hammer to record
the excitation force. When possible, objects were impacted at three different
points (center, edge and section) to obtain various vibratory responses, evoking
how we manipulate objects in our everyday life. The sounds were recorded with
a Neumann KM183 omnidirectional microphone, placed about 15cm from the
object, and a sound card Motu Ultralite mk3 at 44.1kHz sampling frequency.

The Signal Model We considered a signal model based on physical consid-
erations to synthesize the recorded impact sounds. From the point of view of
physics, an impact sound corresponds to the vibratory response of a structure
to an impact excitation. By assuming linear conditions, this structure can be
modeled by a mass-spring-damper system, said harmonic oscillator. Such a me-
chanical system can entirely be characterized by its impulse response. Therefore,
we assumed that the choice of impact to excite the collected objects would reveal
at best the sound sources’ attributes investigated in our current study.

In the case of one degree of freedom in a mass-spring-damper system, the
equation of motion taking into account the dissipation process is:

dx? dx
[ — pe— 1
mdt2+cdt+ka§ 0, (1)

where x is the displacement, m is the mass, k is the spring stiffness assumed
to be constant, and c is the viscous friction coefficient of the object. For ¢ inferior
to the critical damping ¢, = 2v/km, the solution of this equation leads to damped
oscillations and is written :

= Ae “sin(y/1 — Cwt + ) , (2)

where A and ¢ are constants, dependent on the initial conditions, w = ,/%

is the angular frequency and ¢ = £ is the viscous damping coefficient. This

solution describes an exponential decz;y of the oscillation amplitude of the signal.
In this study, we therefore considered structures with K degrees of freedom,
which corresponding impact sounds were modeled as a sum of K exponentially
damped sinusoids, zero for negative time, and could be written as:

K—1
s(t) = H(t) Z ape'Pr e Okt 2TVt (3)
k=0

where aj is the amplitude at the origin, ¢ is the phase at the origin, d
is the damping (in s71) and vy, is the frequency (in Hz) of the k" component.
These signal parameters were estimated using a high resolution method, whose
principle is briefly explained below (see [18] for more details).
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2.2 Signal Parameter Estimation

The recorded sounds were analyzed using the Estimation of Signal Parame-
ters via Rotational Invariance Techniques (ESPRIT) [16]. This high-resolution
method was chosen because of its high accuracy in the identification of close
components, and of its low sensitivity to noise [19].

The ESPRIT Algorithm ESPRIT is a parametric method, linked to a signal
model where the discrete signal to be analyzed z(t) is discretized and is written:

z(l) = s(l) +w(l) (4)

where [ is the sample index and where the deterministic part (), in reference
to equation (5), is a sum of K damped sinusoids:

s(l) = Z_akz,i , (5)
k=0

where the complex amplitudes are defined as oy, = are’®*, and the poles are
defined as zj, = e~ % +2i7¥ The stochastic part w(l) is a gaussian white noise of
variance o2.

Here is performed a singular value decomposition on an estimate correlation
matrix of the signal. The eigenvectors corresponding to the K highest eigen-
values correspond to the so called signal subspace, while the remaining vectors
correspond to the so called noise subspace. The shift invariance property of the
signal subspace allows a simple solution for the optimal poles values z;. Then,

the amplitudes a; can be recovered by solving a least square problem.

ESPRIT in a Gabor Frame To overcome the high computational complexity
of this method and the assumption that the background noise of the analyzed
signal is white, a time-frequency representation of the original sounds was com-
puted [20]. This representation consisted in a Gabor Transform (GT), which is
basically a sub-sampled version of the short-time Discrete Fourier Transform.
It was computed within a Gabor frame (GF), which forms a discrete paving of
the time-frequency plane. The GT allows the expression of x(l) in a given GF
{g,a, M'} which is characterized by a window g, a time-step parameter a, and
a number of frequency channels M. Indeed, an Exponentially Damped Sinusoid
(EDS) in the original sound still being an EDS inside each band, straightforward
time subsampling and sub-band division of the signal through the GT can be
achieved [21]. Several configurations of GT parameters {g,a, M} were tested.
After evaluation of sound quality to computing time ratio, ESPRIT analysis
were finally applied with a = 64 and M = 256 (see [18] for more details).

The Synthesized Sounds The sounds were synthesized on the basis of the sig-
nal model (5) and the signal parameters estimated from the ESPRIT method.
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Synthesis was performed at 44.1kHz sampling frequency, 16-bit resolution, in
.WAV format.

Since the estimation of synthesis parameters with ESPRIT method was not
always optimal on real sounds [18], each synthesized sound was then compared
to the original one from a perceptual point of view. The synthetic sounds that
were perceptually closest to the recorded ones were selected and incorporated
into the final sound data bank (see Table 1), the others were discarded. Actu-
ally, inadequacies between the acoustic morphology of the recorded sound and
the chosen signal model according to the assumptions required in the ESPRIT
method (i.e., multiple impacts or low signal-to-noise ratio) were the main causes
of an unsatisfying synthesis. On the 350 initial recorded sounds, 246 were ac-
curately synthesized and were finally selected. The reader can find examples of
original and resynthesized sounds at [22].

Table 1. Distribution of the selected synthesized sounds in each real category, forming
the sound bank.

Shapes 1D 3D
Materials Solid|Hollow| 20 [Solid[Hollow| Lotal
Metal 7 10 10 8 16 51
Glass - - 7 4 14 25
Stone 3 - 17 5 3 28
Ceramic - - 10 3 12 25
Plastic 8 6 8 7 12 41
Wood 14 - 15 8 14 51
Cardboard 4 - 11 2 8 25
Total 36 16 78 37 79 246

3 Experiment I: Material and Shape Identification

In this section, we present the listening tests that we conducted in order to
determine perceptual categories associated with material and shape attributes
of the sound source. In particular, we evaluate the confusion between actual (i.e.,
physical) and perceptual categories.

3.1 Method

Participants Seventeen listeners participated in the experiment (7 females, 10
males), aged 19-55 years. All of them reported having normal hearing. None of
them was a professional musician.

Stimuli The 246 synthesized sounds were evaluated within 5 separated listen-
ing tests of about 50 sounds each. The sounds were chosen to cover the different
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material and shape categories at best in each test. The average distributions are
available at [22].

Although we make the assumption that loudness is not a fundamental per-
ception cue for the perception of material or shape, sounds were equalized by
gain adjustments to avoid any impact of loudness in the categorization judg-
ments. The gain adjustments were determined by ear by the experimenter with
Adobe Audition. To minimize the contribution of the background noise that is
naturally present in the recorded sound during the gain amplification process, we
spotted the threshold level of appearance of this noise in the concerned sounds
and took it as a reference to adjust the other sounds.

Apparatus and Procedure The experiments were conducted during almost
two months, with a test about every two weeks. Listeners were seated in a
quiet room. A graphical interface was developed specifically for these tests with
Matlab program (R2011a version) running on a Mac OS 10.7.3 environment.
This interface was used to present stimuli to participants and collect responses.
Sounds were amplified with an Apogee One sound card and presented through
Seinnheiser-HD650 headphones.

To begin, participants were accessing to a training page where they could lis-
ten to impact sounds evocative of everyday life objects, as many times as wanted,
to familiarize themselves with the categories further tested in the formal session.
Then, they were accessing to the test where they were asked to evaluate each
sound according to the perceived material and shape. In practice, they had to
classify each sound into one of the proposed Material categories (Metal, Glass,
Stone, Plastic, Ceramic, Wood, Cardboard or Other) and Shape categories (Hol-
low 1D, Solid 1D, 2D, Hollow 3D or Solid 3D) by clicking on the corresponding
label displayed on the screen (screen-views available at [22]). Note that for the
material evaluation, participants were free to propose an additional category by
selecting ” Other” and by entering the evoked category label with the computer
keyboard. The association between response buttons and category labels dis-
played on the screen was randomized at each trial to avoid any bias linked with
the order of presentation of the label categories. Listeners were allowed to replay
the sound as many times as wanted during the trial. The order of presentation
of the sounds was randomized across participants.

3.2 Results

Each session took 20 minutes in average to be completed. In this section, iden-
tification rates of the categories are evaluated in order to conclude about their
perceptual relevance. Since the material and shape evaluation were performed
within a same trial, the interaction between the perceived material and the
perceived shape are also investigated. For sake of clarity, the analyses were con-
ducted separately for materials (the seven categories), shapes (1D, 2D, 3D) and
cavities (Hollow, Solid).
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Outliers We first evaluated the participants’ responses as a whole to detect
possible outliers. One of them was found to be outlier during the first test. He
was asked to effectuate this test again to incorporate the general tendency, that
he completed successfully.

Table 2. (a) Material confusion (%). (b) Shape confusion (%). (c) Cavity confu-
sion (%). Rates represent the percentages of classification of sounds in the perceived
categories with respect to the actual categories of the corresponding physical objects.
The reported values are significantly above chance when ***p < 0.001, except when
indicated by **p < 0.01, *p < 0.05 or p > 0.05. In a same row, confused categories
(p > 0.05) are highlighted in bold.

(a) Perceived
Real Metal | Glass |Ceramic| Stone |Plastic| Wood |Cardboard
Metal 63.55™*" | 15.22*** 7.27 10.03 2.42 1.38 0
Glass 24.477%*134.12"*"|15.29""* |13.88""*| 6.35 5.18 0.71
Ceramic 14.59 [19.76"**| 39.29"" |15.76™"*| 4.71 5.65 0.24
Stone 4.20 15.76 32.77" 24.16 9.66 12.61 0.21
Plastic 14.35 4.60 3.16 (13.34™*| 36.01 |19.66"*" 8.46
Wood 4.73 3.23 7.04 1.73  |33.68™"*| 47.29"** 2.08
Cardboard| 0.24 0 0.24 3.29 [31.29""*|15.76"* | 48.94***
(b) Perceived (c) Perceived
Real 1D 2D 3D Real Solid Hollow
1D 37.10"*"| 28.73 |34.16™*" Solid |61.16"** 38.84
2D 17.04 |46.38%"* | 36.58"** Hollow| 39.18 60.82***
3D 20.44 25.86 | 53.70**

Table 3. Results of TANOVA performed with Materials and Shapes as within-
participant factors.

SS

Factors

df | MS | F p
Materials (7 cat.) 6628.58 | 7.11 [946.94| 31.13 |p;j0.001
Shapes (5 cat.) 5181.69 | 4.64 [1295.42 46.24 |p;0.001
Materials x Shapes (35 cat.)| 9092.90 | 28.45 |327.75| 17.19 |p;0.001

Identification Rates for Material The rate of the ”"Other” category being
very low (< 1%), it will not be taken into account in the further analyses. Results
are shown in the confusion matrix in Table 2 (a) representing the percentages of
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classification of sounds in the perceived categories with respect to the actual cat-
egories of the corresponding physical objects. A t-test with a significance level
a = 0.05 was conducted in each cell to determine reliable values (i.e., above
chance level = 1 /number of choices = 12.50%). The confusion between cate-
gories were then assessed by paired t-tests (T-test 2) between cells in the same
row with a significance level o = 0.05. In particular, it appears that actual Metal
sounds are identified as Metal at 63.55% and as Glass at 15.22%. However, since
there is no confusion between the two groups (p < 0.001), this material appears
to be perceptually clear to identify. Actual Glass sounds were classified in four
perceptual categories (Metal, Glass, Ceramic and Stone) at above chance levels
(p < 0.001). Some perceptual confusion between these categories was revealed
since the percentages did not significantly differ from each other (p > 0.05).
Hence, actual Glass appears to be difficult to identify and classify as Glass. Ac-
tual Ceramic sounds were identified as Ceramic at 39.29%, but also as Glass at
19.76% and as Stone at 15.76%, these percentages do not significantly differ from
each other (p > 0.05). This result confirms the perceptual proximity of these ma-
terials. In addition, Stone and Plastic sounds have not been identified as such.
Stone was instead perceived, although not significantly, as Ceramic (32.77%)
and Plastic, significantly perceived as Stone (13.34%) or Wood (19.66%). Wood
and Cardboard were significantly identified as such, but as Plastic also.

Identification Rates for Shape Results are shown in the confusion matrix
in Table 2 (b). A t-test was used to determine reliable values (chance level
= 33.33%). As for material analysis, the confusion were assessed by conducting
paired t-tests on rates between cells in the same row of the confusion matrix with
a significance level o = 0.05. It appears that actual 1D sounds were identified as
1D and as 3D at rates near chance level. Confusion between these two perceived
categories has also been highlighted (p > 0.05). Actual 2D sounds were signif-
icantly identified as 2D at about 46% but also as 3D at 36%. However, these
two categories were not found to be confused (p < 0.001). Actual 3D sounds
were significantly identified as 3D at more than 50% (p < 0.001) and were not
confused with other categories. The 3D-perceived category is the category that
listeners most often chose, followed by the 2D-perceived and the 1D-perceived.

Identification Rates for Cavities The confusion matrix for cavity assess-
ment is shown in Table 2 (c). The values reliability was also tested with a T-test
(chance level of 50%). It appears that both categories were significantly identi-
fied as such with rates over 60% (p < 0.001). Moreover, no confusion between
categories was found.

Material and Shape Interaction At the end of the tests, most participants
explained resolving first the material evaluation and then the shape one, because
they considered the latter attribute less obvious to evaluate. Thus, the extent
to which the perceived material influences the choice of the perceived shape is
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assessed here.

A chi-squared test with a significance level o = 0.05 was performed on the
percentages of perceived shapes through the perceived materials in order to eval-
uate a Hy hypothesis of independence (x? = 1.38 103, x? = 49.8).

A repeated measures analysis of variance (rANOVA) was also performed
on the participants’ responses where the Material and Shape were included as
within-participant factors (see Table 3). Note that for this analysis, the Shape
categories included Solid 1D, Hollow 1D, 2D, Solid 3D and Hollow 3D. Sig-
nificant effects of main factors were found (p < 0.001). Results also revealed a
significant Material by Shape interaction (p < 0.001). Indeed, it appears that the
number of sounds by perceived shape differ according to the perceived materials
(p < 0.001). Table 4 shows distributions of sounds between shape categories for
each perceived material. The numbers of perceived sounds by gross categories
(materials, shapes and cavities) are substantially identical to numbers of sounds
in each actual gross category of the bank. However, 2D category is more often
associated with Metal, Solid 1D with Wood, and Hollow 1D with Plastic, while
Solid 3D is more often associated with Stone, and Hollow 3D with Metal.

Table 4. Average number of sounds classified by listeners in each category of perceived
shape for given categories of perceived material. Maxima per shape are in bold.

Shapes 1D 3D
2D Total
Materials Solid |Hollow Solid |Hollow

Metal 8 4 20 3 17 52
Glass 3 2 7 5 13 30
Stone 2 1 5 17 1 26
Ceramic 3 2 15 5 7 32
Plastic 4 8 14 5 15 46
Wood 13 6 12 3 9 43
Cardboard 0 1 7 2 7 17

Total 33 24 80 40 69 246

3.3 Discussion

In terms of materials, highest classification rates are obtained in the diagonal
of the confusion matrix except for Stone category, meaning that the percep-
tion of Material is correlated with the physical category of the impacted object.
Metal was the category that was best identified (63%) and the lowest identi-
fied category was Stone (24%), which was mostly classified as Ceramic. Results
also revealed confusion between some perceptual categories. Based on these con-
fusions, we can highlight two macro-categories: Metal-Glass-Stone-Ceramic on
the one hand and Wood-Plastic-Cardboard on the other hand. The obtained
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classification confirms the findings obtained by Giordano [12] where the author
explained that available measures of the mechanical properties of engineering
materials report Plastic and Wood (P-W) as strongly different from Metal and
Glass (M-G) [25] so that signals originated from P-W objects would always be
differentiated from those originated from M-G objects, independently of their
geometry.

In terms of shapes, 3D category is best recognized, followed by 2D and 1D.
Given the low identification rate for 1D shape and confusions between the three
categories of perceived shapes, the 1D category does not seem a relevant attribute
at this point. On the other hand, results showed that the 2D and 3D categories
can be reasonably well identified and seem intuitive to listeners. However, the
fact that the 3D category was most chosen by listeners could be explained by
our greater ability to imagine three-dimensional objects than 1D or 2D types
objects in all types of materials.

Given the high obtained percentages, the cavity attribute appears to be per-
ceptually relevant to listeners. One can also assume that the Hollow or Solid
morphology of an object is acoustically dominant over the nature of its shape
(1D, 2D or 3D).

The choice of perceived shape has be shown to be conditioned by the per-
ceived material, which is in line with results of Kunkler-Peck and Turvey [8] and
Giordano [12]. This observation may reflect our relative inability to conceptu-
ally separate the shape attribute from the material attribute of an object, and to
naturally associate specific shape with specific material because of our ecological
approach of perception [23]. Listeners thus tend to choose shapes that seem most
typical for each material, such as Hollow 3D Metal (e.g., metallic bell) or Solid
1D Wood (e.g., wooden beam), reflecting the physical regularities encountered
in our everyday acoustical environment [24]. However, the fact that associations
between materials and shapes performed within the tests (see screen-view at
[22]) were almost identical to examples presented at the start of the tests lead
us to wonder if participants were influenced in their choices or not.

4 Experiment II: Shape Perception Regardless of
Material Evaluation

Results of Experiment I have shown significant interactions between perceived
materials and shapes. We therefore wanted to evaluate to what extent the per-
ception of the shape was influenced by the perceived material. Therefore, we
decided to test only one perceptual attribute at a time. In Experiment II, we
conducted two listening tests where the material of the impacted objects was
fixed and participants were asked to only evaluate the shape of these objects.
This Experiment was a way to confirm the relevance of the previous shape cat-
egories (1D, 2D and 3D) and to refine their definition by asking participants to
describe the perceived objects with labels (names and/or adjectives). The choice
of materials was made on the basis of the macro-categories highlighted in Exper-
iment I. We selected a representative category of material from each obtained
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macro-category and for which a wide variety of everyday objects was represented
(see Table 1). According to these criteria, the Metal and Plastic categories were
finally chosen.

4.1 Method

Participants Twenty listeners participated in the experiment (5 females, 15
males), aged 23-57 years. All of them reported having normal hearing. None of
them was a professional musician. Eleven participated in Experiment I.

Stimuli Two sets of synthesized sounds for Metal and Plastic categories were
constituted. Sounds were chosen to cover the shapes categories at best. For more
information, the distributions are available at [22]. As in Experiment I (see §3.1),
sounds were equalized by gain adjustments to avoid any impact of loudness in
the categorization judgments.

Apparatus and Procedure Two separate listening tests were conducted. The
test dedicated to Metal category was conducted first, for about one month, and
the test for Plastic category was conducted then, over a similar period. The ap-
paratus used here was the same as in Experiment I (see §3.1).

To begin each test, participants were accessing to a training page where
they could listen to evocative Metal (resp. Plastic) impact sounds of everyday
objects, as many times as wanted, to familiarize themselves with the shape cate-
gories further tested. Then, they were accessing to the test where they were asked
to categorize each sound in one of the propositions (Hollow 1D, Solid 1D, 2D,
Hollow 3D or Solid 3D) by clicking on one of the labels displayed on the screen.
Listeners were also asked to name (i.e., label) the object evoked by the perceived
sound. As in Experiment I, the association between response buttons and cat-
egory labels was randomized at each trial. Listeners were allowed to replay the
sound as many times as wanted during the trial. The order of presentation of
the sounds was randomized across participants.

4.2 Results

Each session took about 15 minutes to complete in average. Confusion matrices
for shapes and cavities are presented Table 5 (a-d). T-test were conducted with
a significance level a = 0.05 with chance level = 33.33% for shapes and = 50%
for cavities. The percentages in brackets are those obtained on the same sounds
in Experiment 1. Globally, the rates are significantly higher in Experiment II
(p < 0.001).

For Metal sounds, we observe a significant increase in the 1D identification
rate with +14pts, while confusion with 2D is not significant (p < 0.001 with
T-test 2), neither the 3D-perceived rate (p > 0.05 with T-test). The identifica-
tion of 2D is lower (—7pts) while confusion with 1D is not significant (p < 0.001
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with T-test 2), neither the 3D-perceived rate (p > 0.05 with T-test). For 3D
identification, an increase of +8pts is observed and low confusion with 1D and
2D were found to be significant after T-test 2 (p > 0.05). Besides, Solid and
Hollow are much better identified with +9pts and +10pts respectively.

For Plastic sounds, the 1D identification rate increased (415pts; p < 0.005)
but much lesser for 2D (42pts; p < 0.001), for which confusion with 1D remains
not significant (p < 0.001 with T-test 2). Besides, there is no improvement in
the 3D identification rate (—2pts; p < 0.001) but confusion with 2D remains
also insignificant (p < 0.001 with T-test 2). For Solid and Hollow sounds, iden-
tification rate were significantly improved (p < 0.001) with +16pts and +31pts
respectively.

Here we consider typical sounds from Table 6 (i.e., sounds classified in a same
category by more than 52% of listeners, this threshold ensuring an acceptable
number of sounds within each category). We observe an increase of the number of
1D and Hollow typical sounds that we could explain by the better identification
rates observed in those two categories, causing a 2D and 3D typical sounds de-
crease in both materials. Yet, typical sounds were almost identically distributed
within perceived shapes from Experiment I to Experiment II.

Table 5. Matrix confusion (%) of: (a) Metal shapes, (b) Metal cavities, (c) Plastic
shapes, (d) Plastic cavities. The percentages of classification obtained in Experiment
I are represented in brackets. The reported values are significantly above chance when
***p < 0.001, except when indicated by **p < 0.01, *p < 0.05 or p > 0.05. In a same
row, confused categories (p > 0.05) are highlighted in bold.

(a) Perceived (b) Perceived

Real 1D 2D 3D R. Solid Hollow
1D | 52.22°° (38) 14.72%* 33.06 S. [70.717** (61.80)]  29.207**
2D 9.09*** 50.91** (58.20) 40 H. 33.49*** 66.51""(56)
3D | 15.24" 13.81°**  [70.95"* (62.70)

(c) Perceived (d) Perceived

Real 1D 2D 3D R. Solid Hollow
1D [49.64"* (34.87) 21.43" 28.93 S. [79.25"* (63.14)]  21.15"*
2D 16.25"** 54.377** (52.21) 29.38 H. 29.09*** 70.91%** (40.20)
3D 33.81 17.58°" 48.617 (51)

4.3 Discussion

In Experiment II, only the shape of the impacted object was evaluated. Results
showed that listeners’ choices led to clearer categorizations than in Experiment I.
Also, we observed that 1D, Solid and Hollow sounds were much better identified
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Table 6. Metal and Plastic typical sounds distribution within shapes categories from
Experiment I to Experiment II. Sounds were judged typical when classified by more
than 52% of listeners in a given shape category.

Metal Plastic
Experiment I|Experiment II|Experiment I|Experiment 11
1D 7 9 5 10
2D 12 5 7 4
3D 22 21 17 7
Solid 14 15 15 13
Hollow 15 21 7 10

Table 7. Labels and adjectives most given by participants in Experiment II to describe
the perceived shapes of Metal and Plastic objects.

Labels Adjectives
Solid 1D Rod / Bar Little
Hollow 1D Tube -
2D Membrane / Plates | Thin / Flexible / Big
Solid 3D Block / Brick Hard / Rigid / Strong
Hollow 3D Bowl / Bell -

while confusion between 1D and 3D decreased. However, 2D and 3D identifi-
cation rates remained identical to those observed in Experiment I. Thus, these
results allowed us to actually conclude that the 1D category is relevant from
a perceptual point of view. Moreover, Solid and Hollow attributes seemed to
be very clearly perceived by listeners, ensuring us about the great interest of
these categories for synthesis perspectives. Besides, typical sounds distributions
showed us a participants’ tendency to perform almost identical associations be-
tween materials and shapes to those performed in Experiment I. Consequently,
the observed interactions between materials and shapes previously considered as
biases, are likely to have a cognitive and not a methodological origin.

In terms of labelling, semantic descriptions most frequently used by partici-
pants are listed in Table 7. This brings us to conclude that listeners considered
1D objects as elongated objects such as tubes or bars, 2D objects as flattened
objects such as plates or membranes, and 3D objects as volumetric objects such
as bricks, bowls or bells. These descriptions are in line with the real categories
we defined in our sound bank (see §2.1). A size indication is yet added, showing
that 1D objects are most often perceived as little objects, 2D objects most often
as big and thin objects, and 3D objects most often perceived as big and strong
objects.
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5 Conclusions and perspectives

The presented study is part of the development of an impact sound synthesizer
for which a high-control strategy is desired. More generally, we are currently
interested in offering an intuitive control of synthesis models for an easy manip-
ulation of intrinsic sound properties such as timbre. This aspect is for instance
of importance within virtual reality domain. Indeed, the use of synthesis mod-
els can dramatically be improved in sonification processes which generally deal
with the choice of optimal synthesis parameters to convey relevant acoustic in-
formation through sounds. According to this perspective, we wanted to define
perceptual categories of shapes and materials reflecting everyday objects, with
a view to describe them acoustically.

For this purpose, an impact sound bank was created from everyday items
classified within seven types of materials (Metal, Wood, Plastic, Glass, Stone,
Ceramic and Cardboard) and five types of shapes (Solid 1D, Hollow 1D, 2D,
Solid 3D and Hollow 3D). In the aim of defining acoustic descriptors relevant for
material and shape identification, recorded sounds were resynthesized on the ba-
sis of a signal model expressed as a sum of exponentially damped sinusoids. The
synthesis parameters were estimated with a high-resolution (ESPRIT) method.
We then set up a first experiment during which participants had to classify
the synthesized sounds with respect to the material and shape attributes. In
terms of materials, Metal was the best identified and Stone the lesser. From a
perceptual point of view, two macro-categories were highlighted: Metal-Glass-
Stone-Ceramic on the one hand and Wood-Plastic-Cardboard on the other hand.
In terms of shapes, 3D was the most relevant for listeners while 1D was not con-
sidered as pertinent at this point. The Hollow and Solid attributes appeared
to be quite evocative. Besides, results revealed a certain influence between the
perceived material and the perceived shape. In order to evaluate this interaction
and the intrinsic relevance of the shapes categories, a second experiment was set
up, comprising two listening tests in which only the shape attribute was evalu-
ated. Sets of Metal and Plastic sounds were chosen for their acoustic and clear
perceptual distinction. As we also wanted to refine the verbal description of our
shape categories, listeners were also asked to label the evoked objects. These
mono-tasking tests allowed us to finally conclude on the interest of the 1D cate-
gory and on the great relevance of the Solid and Hollow categories. In addition,
we concluded that participants tended to make their choice from an ecological
approach, that is to say, influenced by their daily environment. Though, the se-
mantic description made during the tests were found to be consistent with the
shapes categories previously defined.

Perceptual categories of shapes and materials being clarified, the next step
is to acoustically describe them. Psychoacoustical studies showed that damp-
ing properties are essential cues for material perception (e.g [9], [12], [13]). Re-
cent works ([17] and [15]) proposed a damping model to describe the damp-
ing behaviour of the signal components: a(w) = el®“+)  where ayg is the
global damping and «,. the relative damping (related to the fact that damping
is frequency-dependent). They concluded that these two damping parameters
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were an important descriptor of materials for synthesis perspective. Roughness,
associated to the presence of several frequency components within the limits of
a critical band, was also found to be relevant in [15]. On the basis of the esti-
mated signal parameters of the impact sounds analyzed in this study, acoustic
description of the materials categories was recently investigated by Sirdey (see
his thesis to be defended [18]). In parallel, we began to focus on the acoustic de-
scription of shapes categories (see [26]) for which damping and spectral/energy
descriptors are foreseen to be relevant. Investigations are currently underway on
parameter «a, roughness, spectral centroid, Mel-Frequency Cepstral Coefficients
(MFCC) of modes density and MFCC of energy distribution.

Acknowledgments. The authors wish to thank Vincent Germain for the con-
stitution of the sound data bank.
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