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Abstract—The inverse fast Fourier transform (IFFT) method is a
time–frequency technique which was proposed to alleviate the complexity
of the additive sound synthesis method in real-time applications. However,
its application is limited by its inherent tradeoff between time and fre-
quency resolutions, which are determined by the number of frequencies
used for time–frequency processing. In a previous work, the authors
proposed a frequency-refining technique for overcoming this frequency
limitation, permitting achieving any time and frequency resolution using a
small number of frequencies. In this correspondence we extend this work,
by proposing a time-refining technique which permits overcoming the
time resolution limitation for a given number of frequencies. Additionally,
we propose an alternative to the frequency-refining technique proposed
in our previous work, which requires about half the computations. The
combination of these two results permits achieving any time and frequency
resolution for any given number of frequencies. Using this property, we
find the number of frequencies which minimizes the overall complexity.
We do so considering two different application scenarios (i.e., offline sound
design and online real-time synthesis). This results in a major complexity
reduction in comparison with the design proposed in our previous work.

Index Terms—Colored noisy signal, inverse fast Fourier transform
(IFFT) sound synthesis, short transient signal.

I. INTRODUCTION

S YNTHESIS of environmental sounds has received an increasing
interest in the last decade for virtual reality, animation and

physically based simulations. Several models have been proposed for
simulating liquid sounds [1]–[3], contact sounds (such as impact [4],
fracture [5], deformation and friction sounds [6]), and aerodynamic
phenomena (like wind and fire) [7]–[9]. The synthesis techniques can
be broadly classified into two main categories. The first category is
based on physical models, which aim at simulating the physics of
sound sources [10]. The second category is based on signal models,
which aim at reproducing perceptual effects independently of the
physics of the source [11]. Some signal models also involve physically
inspired control parameters (like the speed of the wind, the size of a
resonating object ) leading to a hybrid class of “physically inspired
signal models” [8], [12], [13].

Among linear signal models, the “sinusoids plus noise” model [14]
has been successfully applied for analysis, transformation and syn-
thesis of a wide class of environmental sounds [15], [16]. The model
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represents a sound as a combination of a deterministic contribution
(i.e., a sum of time-varying sinusoids, also called partials) and a sto-
chastic contribution (i.e., a “time-varying filter” with white noise at its
input). One great advantage of this model is that the synthesis parame-
ters can be determined from the analysis of natural sounds. Also, mod-
ifications of the synthesis parameters lead to high-quality parametric
transformations, such as pitch-shifting, time-stretching and morphing.
These transformations are often performed “offline.” In this scenario,
the synthesis parameters are precomputed and stored, e.g., in a sound
description interchange format (SDIF) file [17]. However, some in-
teractive synthesis scenarios involve real-time (“online”) manipulation
of the synthesis parameters. The complexity requirements assigned to
sound synthesis depends on the application. Non-real-time applications
may afford costly synthesis models, but real-time applications typically
impose heavy constraints on the computational cost. To address this
issue, a computationally efficient method based on “inverse fast Fourier
transform” (IFFT) was proposed for synthesizing the deterministic and
stochastic contributions of the “sinusoids plus noise” model [14], [18].
This method was used for designing musical and environmental sound
synthesizers satisfying real-time constraints [16], [19].

The IFFT method requires a number of frequencies (which equals
the synthesis window size) matching the length of the auto-correla-
tion function of the sound to be synthesized. Thus, a large number
of frequencies is needed to reproduce narrowband noisy components.
However, this is not compatible with the generation of short transient
signals. This is an important issue when synthesizing environmental
sounds, which require the generation of deterministic and stochastic
signals with a wide range of temporal and spectral behaviors. For in-
stance, sounds such as impacts [20], drops of water [1] or fire crack-
lings [8] have very sharp transients. On the other hand, sounds such
as wind whistling or fire hissing have very narrowband noisy compo-
nents [8]. An approach for synthesizing these different sorts of envi-
ronmental sounds with the IFFT method was proposed in [16] by using
several synthesis window sizes in parallel. A drawback of this approach
is that it cannot synthesize narrow noisy components having short tran-
sients. This limitation was overcome by the method proposed by the
authors in [21], where a small number of frequencies was used to guar-
antee the synthesis of short transients. Then, a frequency-refining tech-
nique is used to go around the resulting frequency resolution limitation.
This technique consists in generating time–frequency noise with an
auto-correlation function such that the noise obtained after converting it
to time domain has the desired power spectral density. This method has
the potential for synthesizing filtered noise with an extended range of
time–frequency properties, in comparison to IFFT synthesis. However,
this important property comes at the expense of an increased compu-
tational complexity, which limits its application in real-time synthesis
applications.

In this correspondence, we extend our work [21] in two ways. First,
we propose a time-refining technique which permits synthesizing short
transients (with a time resolution smaller than the length of the syn-
thesis window) while using a large number of frequencies. This tech-
nique can be seen as the dual of the frequency-refining technique pro-
posed in [21], in the sense that it permits overcoming the time resolu-
tion limitation. Second, we propose an alternative to that frequency-re-
fining technique. More precisely, in order to generate time–frequency
noise, the technique in [21] starts with white noise in the time domain,
and uses an analysis stage (filterbank) to convert it to the time–fre-
quency domain. Instead, the proposed technique generates the desired
time–frequency noise without using an analysis stage, significantly re-
ducing the overall complexity. Hence, combining these two techniques,
any time and frequency resolution can be achieved by carrying out the
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synthesis in the time–frequency domain using any number of frequen-
cies. Using this, we study which is the optimal number of frequencies in
the sense of minimizing the overall complexity. We do so considering
the two scenarios described above, depending on whether the synthesis
parameters are computed offline or online. In both cases, the resulting
optimal configuration leads to a significant complexity reduction when
compared with the synthesis method proposed in [21].

As we point out in Section II, the IFFT synthesis method is equiva-
lent to a synthesis filterbank architecture. A synthesis technique related
to this architecture is the phase vocoder [22]. As pointed out in [22],
this technique is equivalent to a filterbank, with the only difference in
that each frequency band is multiplied by a complex modulating term,
which is not present in the filterbank architecture. Hence, the proposed
techniques are readily applicable to carry out sound synthesis using
the phase vocoder architecture, by considering the extra complex mod-
ulating term in the design.

The rest of the correspondence is organized as follows. In Section II,
we briefly introduce the IFFT synthesis method, which states the basis
for our proposed synthesis method. In Section III, we describe the fre-
quency-and time-refining techniques used to overcome the frequency
and time resolutions of the IFFT method, and we combine them to
propose a unified time–frequency synthesis method. In Section IV,
we address the synthesizer design, including the optimal choice for
the number of frequencies. In Section V, we illustrate the applica-
tion of the proposed scheme by synthesizing realistic environmental
sounds, and we also compare the proposed frequency-refining tech-
nique with the one proposed in [21]. Finally, we give concluding re-
marks in Section VI.

Notation: Throughout the correspondence, we will use the fol-
lowing notational convention: scalars are denoted using normal (i.e.,
non-bold) lowercase letters (e.g., ); and vector and matrix using
lowercase bold letters (e.g., ) and uppercase bold letters (e.g., ),
respectively. The th entry of a vector is denoted by and the

th entry of a matrix is denoted by . Finally, denotes
the complex conjugate of the matrix and denotes its transpose
conjugate i.e., .

II. NOISY SOUND SYNTHESIS USING THE IFFT METHOD

A noisy sound is generally modeled as a stochastic process with
a time-varying spectrum

where denotes the -transform with respect to the first variable,
and

with denoting expected value [14]. Using the IFFT method, the
sound is synthesized by the following overlap-add procedure:

(1)

where is a synthesis window of size (i.e., if
or ), which is assumed to satisfy

(2)

to conserve energy, and is the synthesis hop size. The th
block of samples is obtained doing the

inverse discrete Fourier transform (DFT) of an -dimensional random
vector , i.e.,

where

(3)

with being a white complex vector random process (i.e., a se-
quence of uncorrelated complex random vectors with uncorrelated en-
tries) with Gaussian distribution.

As shown in [21], (1) is equivalent to a synthesis filterbank operation,
i.e.,

(4)

where the filters ,
are frequency-shifted versions of the synthesis window , and

denotes the upsampling operation with factor (i.e.,
inserting zeros between every two samples) applied to the
signal .

It follows from (4) that the frequency resolution of the IFFT method
is determined by the spectral shape of the synthesis window ,
and that its time-resolution is given by its time domain concentration.
Hence, this method suffers from an inherent tradeoff between time
and frequency resolution, turning the synthesis of narrowband noises
incompatible with the generation of short transient signals.

III. OVERCOMING TIME AND FREQUENCY RESOLUTION LIMITATIONS

In this section, we propose two techniques which permit overcoming
the aforementioned tradeoff. In Sections III-A and III-B, we explain
how to achieve arbitrary frequency and time resolutions, respectively,
and in Section III-C we explain how to combine these two techniques
to build a time–frequency synthesizer without time and frequency res-
olution limitations.

A. Achieving Arbitrary Frequency Resolution

In this section, we assume that we want to synthesize a stationary
random process with an arbitrary spectral shape, which may include
components narrower than the frequency concentration of the syn-
thesis window . A method for doing so was proposed in [21]. That
method starts by generating scalar white noise which is converted to
the time–frequency domain using an analysis filterbank. The resulting
signal is then processed by a transfer matrix and its output is converted
back to time domain using a synthesis filterbank. In this section, we
propose an alternative strategy for carrying out the same task. The
essential difference is that the proposed strategy does not need the
analysis filterbank stage. Instead, we design the transfer matrix so that
vector white noise is directly applied to its input. The advantage of
doing so is that this noise can be real-valued, hence the complexity
associated with the transfer matrix is reduced by two.

As depicted in Fig. 1, the idea consists of processing an -dimen-
sional white random vector (the value of is determined by the
number of columns of the transfer matrix in (6) below) by an

transfer matrix so that the signal obtained after syn-
thesis has the desired power spectrum.

Remark 1: Notice that the scheme in Fig. 1 can be interpreted as
a generalization of the IFFT method described in Section II. More
precisely, the IFFT scheme is obtained by replacing the
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Fig. 1. Scheme for achieving an arbitrary spectral shape.

transfer matrix by a diagonal static matrix , with
entries , . Also, in
the IFFT method, the synthesis window needs to be chosen so
that its impulse response has length and satisfies (2).

Using polyphase representation [23], we can write

where and are the polyphase representations of and the
synthesis filterbank, respectively, having impulse responses

for all , and . Let
be the spectrum of . We have that

(5)

Let be a spectral factorization of [24].
Then, from (5), the required matrix needs to satisfy

(6)

The minimum-norm solution of (6) is given by:

(7)

where is the Moore-Penrose pseudoinverse [25] of , which
is shown to be equal to the polyphase representation of the
dual window [26] of . While (7) can be easily computed, it
produces a transfer matrix whose impulse response has a
very large number of nonzero entries. Hence, its implementation is
very inefficient. To improve efficiency, the number of nonzero entries
in can be reduced by solving (6) using sparse approximation
techniques [27]. Generally speaking, these techniques aim at (approx-
imately) solving the following minimization problem:

(8)

where, for any transfer matrix ,
, with

(9)

and means that the minimization is done over
all matrices whose impulse response has at most nonzero entries.
To solve (8) we use the orthogonal matching pursuit (OMP) algorithm
[28], [29]. We describe the resulting algorithm below.

For each and , define the transfer
matrix

(10)

where the impulse response of is defined by

otherwise.

Then, is computed using the following iterative procedure: Let
. Then, at iteration we compute

(11)

(12)

(13)

where is the set that includes the indexes
, and means that the minimization with

respect to is done over all matrices whose impulse responses have
zeros outside .

Remark 2: It is straightforward to verify that

Hence, the computation of all the inner product in (11) can be done
by computing the impulse response of .
Also, the minimization in (13) is a linear least squares problem whose
solution can be easily computed.

B. Achieving Arbitrary Time Resolution

Now suppose that we want to change the amplitude of the spectrum
of the random process synthesized in Section III-A, following an ar-
bitrary law , which may include transients shorter than the time
concentration of the synthesis window . We can do this in the time
domain by multiplying by the output of the synthesis filterbank

. To transpose this operation to the time–frequency domain, we
add after a perfect-reconstructing pair of analysis and synthesis fil-
terbanks (i.e., a pair which achieves perfect reconstruction), as shown
in Fig. 2.

The analysis filterbank operation consists of filtering using an
array of filters , followed by a downsampling
operation with factor (i.e., by keeping one out of samples). Then,
as shown in the Appendix, the impulse response of the

th entry of the transfer matrix shown in Fig. 2 is
given by

(14)
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Fig. 2. Scheme for achieving arbitrary time resolution.

where . Let be the impulse response length
of , . For each , we can expand ,

using DFT as follows:

(15)

Then, as shown in the Appendix, we have that

(16)

where the impulse response of the th entry of
is given by

(17)

(18)

where denotes convolution.
Remark 3: Notice that (16) permits expressing the time-varying

transfer matrix as a time-varying weighted sum of the time-in-
variant transfer matrices .

Remark 4: Since the filters , are fre-
quency-shifted versions of the same prototype , if is
integer, then , and therefore, the output of
is obtained from that of by doing an -step circular shift. Also,

, and therefore, the output of is obtained
from that of by complex conjugation. Hence, only the
( denotes the smallest integer greater than or equal to ) transfer
matrices , need to be computed to generate
(16).

C. Time–Frequency Synthesizer Architecture Without Time and
Frequency Resolution Limitations

Using the results above we can design a time–frequency method
for synthesizing noisy sounds with arbitrary frequency and time res-
olutions. The idea is to use the method described in Section III-A to
generate a number of contiguous narrow frequency components, the
amplitude of each of which is modified using the method explained
in Section III. The scheme is depicted in Fig. 3. The number of
frequency bands is chosen to achieve the desired frequency resolu-
tion. Notice that does not need to be equal to the number of
frequency bands used in the time–frequency representation. Then, for
each , a white, -dimensional vector random process

is applied to the input of an transfer matrix .
The matrix is designed as described in Section III-A, so that it
generates at the output of the synthesis filterbank , a narrow fre-
quency band with the desired spectral shape. Then, for each ,

Fig. 3. Time–frequency synthesis architecture.

the coefficients , are computed from the desired
time-varying amplitude of the th frequency band using (15) (or
the more efficient method described in Section IV-B). The constants

are then used to multiply the output of the transfer
matrices , , which are computed as explained in
Section III-B.

Depending on the application, the computation of the coefficients
, can be performed either online or offline. We

refer to these two scenarios as online synthesis and offline synthesis,
respectively. Note that in both scenarios, the sound synthesis is per-
formed in real-time. The only difference is that in the online scenario
the time-varying amplitudes are specified “on the fly”, while in
the offline scenario these amplitudes are known in advance (e.g., stored
in an SDIF file).

Remark 5: The scheme in Fig. 3 requires the computation of
transfer matrices of dimensions , and transfer
matrices of dimension (recall Remark 4). Hence, it seems to
suffer from a very high complexity. However, notice that the nonzero
entries of the matrices concentrate in a neighborhood of the row
corresponding to the center of the th frequency band. Also, in view of
(17), the nonzero entries of the matrices concentrate towards
its main diagonal. Hence, the composition can be very
efficiently implemented.

IV. SYNTHESIZER DESIGN

The IFFT method described in Section II carries out the synthesis op-
eration using frequency bands, and its maximum time and frequency
resolutions are determined by this value. As explained in Section III-C,
the proposed synthesis architecture overcomes these resolution limita-
tions using time- and frequency-refining techniques. Hence, any time
and frequency resolution can be achieved using any value of . In this
section, we use this architecture to design a noisy sound synthesizer.
We use a sampling frequency of kHz. We want a frequency
resolution of frequencies over the range , and
we want the amplitude of the signal in each frequency band to vary once
every samples, i.e., 1.5 ms.

In Sections IV and IV-B, we address the synthesizer design, as-
suming that the values of and (the downsampling factor) are
given. In Section IV-C, we use this design to study the optimal values of

and (in the sense of minimizing the overall complexity) for both,
online and offline synthesis. The resulting optimal offline synthesis
scheme slightly differs from the one depicted in Fig. 3, and is there-
fore summarized in Section IV-D. Finally, in Section IV-E we compare
the proposed synthesis schemes with the one proposed in [21].
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Fig. 4. Shape of the individual spectral components .

A. Synthesizer Design for Given Values of and

In this section, we address the synthesizer design. To this end, we
assume that the input data for the design is: the number of fre-
quency channels (determining the frequency resolution), the rate
(in samples) with which the amplitudes of each frequency channel
are specified (determining the time resolution), the sequences ,

, defining the amplitudes of each frequency channel,
specified once every samples, the number of frequency bands
and the downsampling factor .

For each , we design the spectral shaping transfer ma-
trix so that it generates, at the output, a signal with spectrum

, where is a root raised cosine filter [30] with
roll-off factor , bandwidth Hz and center
frequency

otherwise.
(19)

Some of the resulting spectral shapes are shown in Fig. 4. Notice that
this design guarantees that

for all

hence a flat spectrum is obtained when all bands have the same ampli-
tude. Each is designed using the iterative procedure (11)–(13),
which is stopped when the relative energy difference between
and the spectrum induced by is smaller than 40 dB.

It follows from equation (17) that the filters ,
need to be concentrated in frequency, so that the off-diag-

onal terms of , vanish quickly. However, if their
frequency response is too concentrated, the impulse response length
(of , ) becomes too big, and therefore, a large
number of transfer matrices need to be computed (re-
call Remark 4). We found a good compromise by choosing and
designing the prototypes and as FIR filters having impulse
response length , which best approximate, in a least-squares
sense, a raised cosine window with roll-off factor , bandwidth

and center frequency , i.e.,

otherwise
(20)

and . As mentioned in Section III-B, the prototype of
the synthesis filters needs to be designed so that its output is an approxi-
mate reconstruction of the input to the filters , . We
design using the iterative algorithm in [31, Eq. (5.3.16)]. The iter-
ations are stopped when the relative analysis/synthesis reconstruction

error becomes smaller than 40 dB. The resulting impulse response
is then truncated by removing the leading and trailing taps which

are 60 dB smaller than the maximum absolute value.
The transfer matrices , are computed

using (17). In order to reduce the implementation complexity, we trun-
cate them by zero-rounding their entries having absolute values smaller
than a threshold chosen 40 dB smaller than the maximum absolute
value.

As mentioned before, the amplitude of each frequency band is spec-
ified once every samples. In order to build the coefficients

, , (using either (15) or the effi-
cient method described in Section IV-B), we need to interpolate these
values to obtain one value per sample. We do so using a Hann window
[32] of length , which is concentrated in frequency and hence
minimizes the number of terms required in the expansion (16). The in-
terpolated amplitude function has bandwidth , and therefore only

terms need to be considered in the expansion (16). More-
over, only need to be computed since the remaining
terms are obtained by complex conjugation.

B. Computation of

For each frequency channel , equation (15) indicates
that the synthesis parameters , are computed
using DFT on the segment , of the time-
varying amplitude signal . This requires multipli-
cations per sample and per frequency component present in the sound
to be synthesized. As mentioned in Section III-C, this computation can
be carried out either online or offline. In the former case, its associated
complexity is a critical issue. Since is obtained from an interpo-
lation procedure, and only coefficients need to be computed,
for each and each (recall the last paragraph of Section IV-A), it turns
out that there is a more efficient method to carry out this computation.
We describe this method next.

Recall that denotes the sequence of amplitudes for the fre-
quency channel , specified once every samples. Let denote the
Hann window used for interpolation, i.e.,
(recall that denotes the upsampling operation with factor ).
Now, it is straightforward to see that the segmented DFT operation on

is equivalent to an analysis filterbank operation. This filterbank is
formed by the filters , , derived from the prototype

otherwise

by inverse frequency modulation (i.e., ,
), followed by a downsampling operation with factor . Let

, . Then, for each , the
sequence is given by

(21)

Since only coefficients need to be computed, for each fre-
quency component in the sound to be synthesized, (21) requires

multiplications per sample.
To see the computational advantages of the proposed method, we

consider the case where and , as in the optimal
online synthesis design described in Section IV-D. Using the DFT pro-
cedure in (15), the computation of the synthesis parameters
requires 66 multiplications per sample and per frequency component,
while using (21) requires 1 multiplication.

C. Optimal Values of and

The designs presented in Sections IV-A and IV-B assume that
and are given. A natural question is how to choose these two values
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TABLE I
OPTIMAL DOWNSAMPLING FACTOR FOR EACH NUMBER OF FREQUENCY

BANDS, CONSIDERING BOTH, ONLINE AND OFFLINE SYNTHESIS

so that the overall complexity of the synthesis algorithm is minimized.
In regard to the value of , an extreme case consists in choosing it
small enough so that the desired time resolution is readily achievable
without using time-refining. Then, the desired frequency resolution is
achieved using frequency-refining. This is the configuration used in
[21]. In the other extreme case, is chosen large enough so that the
desired frequency resolution is readily achievable, and the desired time
resolution is achieved using time-refining. In this section we study the
optimal choice of between these two extreme cases.

For each value of , the downsampling factor needs to satisfy
. While a small value of requires that the branches be-

fore the synthesis filterbank in Fig. 3 are computed more often,
a large value of increases the impulse response length of the syn-
thesis filters , , as well as the number of nonzeros
entries in the impulse responses of the transfer matrices . In the
case of online synthesis, it also affect the computation of the synthesis
coefficients , as described in Section IV-B. Hence, for each ,
the optimal value of needs to be determined by a numerical search.

To measure the complexity of the synthesis algorithm, for given
and , we count the number of real multiplications per synthesized
sample. To do so, notice that in Fig. 3, only branches need to
be computed since the synthesized signal is real valued. Also,
it follows from (5) that we can choose the white vector random
processes , to be real. After doing so, the
computation of each requires multiplications
(recall that denotes the number of nonzero entries in the
impulse response ). On each branch in Fig. 3, the computa-
tion of each , requires
multiplications, and the multiplication with the constants
requires multiplications, where

denotes the number of nonzero rows of the
transfer matrix . Finally, using the algorithm in [33],
and assuming that is a power of two, so that an -point FFT
can be implemented with (real) multiplications using the
Radix-2 algorithm [34, Ch. 6.1], the implementation of the synthesis
filterbank requires multiplications,
where denotes the impulse response length of the synthesis filter
prototype .

Since needs to be a power of two, our search is constrained to
. Using the above, for each value

of , we choose the value of that minimizes the overall computa-
tion. We do so for both, offline and online synthesis. For the case of
online synthesis, we consider the extreme case in which the sound to
be synthesized has frequency components (notice that in
general, a sound has fewer components, e.g., the glass impact studied
in Section V-A). The optimal values of are shown in Table I.

In Figs. 5 and 6, we show the computational cost of the offline and the
online synthesis algorithms, respectively, resulting from each value of

, and using the values of from Table I. We show the total compu-
tational cost, as well as that of each stage, i.e., the frequency-refining
stage described in Section III-A, the time-refining stage described in
Section III-B, the computation of the synthesis parameters
(only for the online synthesis method), and the synthesis filterbank

Fig. 5. Computational cost of the offline synthesis algorithm versus the number
of frequency bands .

Fig. 6. Computational cost of the online synthesis algorithm versus the number
of frequency bands .

, shown in Fig. 3. In the case , the time-refining stage
is not needed, since the time resolution is already fine enough without
it. Hence its computation is not considered in the figures. Also, the use
of the frequency-refining stage is not needed when ; hence,
its computation is also not considered. Moreover, the removal of this
stage implies that the input of the transfer matrices is real-valued.
Hence, the cost of their implementation is reduced by half.

In the case of offline synthesis, we see that the total complexity of
the algorithm decreases as increases, and this is mostly due to the
complexity reduction of the frequency-refining stage. Hence, the op-
timal choice is . This leads to a complexity of 396 mul-
tiplications per sample, which is split into 356 multiplications for the
time-refining stages and 40 multiplications for the synthesis filterbank.
For online synthesis, the optimal choice is , which results
in an overall complexity of 1677 multiplications, split into 296 for the
frequency-refining stages, 521 for the time-refining stages, 832 for the
online computation of the synthesis coefficients , and 28 for the
synthesis filterbank.

Remark 6: Notice that the designs studied in Figs. 5 and 6 do not im-
pose any constraint on the synthesis delay (latency). More precisely, as
explained in Section III-B, the analysis filterbank and the syn-
thesis filterbank form a perfect reconstruction pair. This implies
that either the impulse response or or both have non-causal
taps. This in turns implies that the matrix impulse responses ,
defined in (17), also have a non-causal component. For the practical
implementation, a delay needs to be added to make causal.1 If

denotes this delay, the synthesized signal will have a delay of
samples. Hence, if synthesis delay is a concern, this

1Strictly speaking, another delay needs to be added if has non-causal
taps. However, this is not required since the non-causality of can be elim-
inated by adding a negative delay to .
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Fig. 7. Proposed offline synthesizer architecture.

may impose a constraint on the choice of . In particular, for the op-
timal online design (i.e., with ), this delay is 224 samples
( 5 ms.), which is reasonable for most interactive applications. On the
other hand, the optimal offline design (i.e., with ) has a
latency of 2036 samples ( 46 ms.), which might be too large. To re-
duce this latency, we can choose from Table I the offline design with

and . While this choice increases the complexity
from 396 to 738 multiplications, it results in a latency of 734 samples
( 17 ms), which meets the interactivity requirements.

D. Optimal Offline Synthesis Scheme

In view of Fig. 5, to minimize the complexity in the case of offline
synthesis, we propose a design using . Recall that in this
case, the frequency-refining stage is removed. This is equivalent to
choosing, in Fig. 3, , for each , as a column vector
with its th entry equal to one and zeros in its other entries
(i.e., and , for ). This implies that the
shape of the spectral components is directly determined by the
synthesis filterbank , via . Hence, to obtain the
shapes shown in Fig. 4, when , is designed as a root
raised cosine filter instead of a raised cosine filter. This results in the
impulse response of being much longer. We use an impulse re-
sponse length of 16 384 samples. However, notice that these filters are
only used to build the transfer matrices in (17), and their influence
in the overall complexity is only implicit in the computation of these
matrices.

The resulting scheme is depicted in Fig. 7, where for each
, , and denote scalar white random processes,

and and denote the th column of and , respectively.
Also, the block labeled selector constructs the output of the model

, for all , using only the outputs of and , as
explained in Remark 4.

E. Comparison With the Synthesis Method in [21]

The design proposed in [21] uses and . While
that design is different from the one considered in this correspondence
(here we use when ), it is designed aiming at the
same goal than the design with in Fig. 5, namely, to avoid
using a time-refining stage. Fig. 5 shows that this is not the optimal
choice as far as complexity is concerned. In order to avoid having a
very large complexity, only spectral components were used
in [21] (instead of as done in this work) and they were
uniformly distributed in the linear scale at low frequencies and in the
ERB scale at high frequencies. For comparison purposes, if we use
the design proposed in [21], using spectral components

Fig. 8. Relative synthesis error versus the number of frequency bands .

Fig. 9. Synthesis of a glass impact starting from 750 ms., and detail of the
attack showing a settling time of about 1.5 ms. for the time–frequency method.

uniformly distributed in the linear scale, the resulting complexity would
be 14 264 real multiplications per sample, i.e., comparable to that of
the design with shown in Fig. 5. This is about 8.5 times more
complex than the proposed online design and 36 times more complex
that the proposed offline design.

V. NUMERICAL EXPERIMENTS

A. Synthesis Examples

In order to illustrate the application of the proposed method, we syn-
thesize two examples taken from [21]. The first is a blurry effect on a
glass impact. This sound consists of narrow frequency bands at 1051,
1849, 3388, 5339, 7606, and 10 163 Hz, whose amplitude decay ex-
ponentially with time constants 4.948, 6.397, 10.78, 21.26, 47.49, and
110.4, respectively. We use the proposed offline synthesis scheme sum-
marized in Section IV-D. To obtain a reference for comparison, we con-
sider the time domain (brute force) method obtained by directly mul-
tiplying the outputs of the frequency-refining stages in Fig. 1, by the
desired amplitude values, before addition. To do the comparison we
average, over a 100 runs, the relative square error (difference) between
the proposed synthesis method and the reference. Fig. 8 shows that this
difference is about 23 dB for all values of . Notice that, in view of
the reference used, this error measures the performance lost due to the
time resolution limitation of the proposed method. Hence, it is mostly
due to the error at the impact instant.

For , the synthesized signals and their spectra are shown
in Figs. 9 and 10, respectively. For this particular run, the relative
square error is 23.36 dB. Fig. 9 shows a detail of the impact instant.
We see that the time domain method reacts instantaneously to the
impact, while the proposed time–frequency method reacts in about
1.5 ms. Fig. 10 shows that the spectra of both methods are similar
in shape, except for some valleys which appear between contiguous
peaks in the time–frequency method. These valleys do not produce
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Fig. 10. Spectra of the synthesized glass impact sounds.

Fig. 11. Spectrogram of fire sound synthesized using the time domain method.

Fig. 12. Spectrogram of fire sound synthesized using the proposed time–fre-
quency domain method.

any perceptual artifact, and result from the truncation of (16) to
terms, as described above.

The second example is the synthesis of fire sound. This sound is
formed by three components. The first is the combustion, which is a
narrow component at very low frequency. The second is the hissing,
which is formed by two very narrow components at relatively high fre-
quency (around 5 and 7.5 kHz). The third components is formed by
the cracklings, which present very short transients. The relative square
error between the synthesis using the time domain (brute force) method
and the proposed offline time–frequency method, is shown in Fig. 8.
We see that this error is between 30 dB and 35 dB for all values
of . For , the spectrograms for the time domain and the
proposed methods are shown in Figs. 11 and 12, respectively. We see
that the spectrogram obtained with the proposed method clearly shows
the presence of all three components, and that it reasonably resembles
the reference spectrogram obtained using the time domain method.

The sound synthesis examples presented above, as well as other ex-
amples including waves, wind, whoosh, stones, etc., can be found at
http://www.lma.cnrs-mrs.fr/~kronland/UnifiedTFSynth/sounds.html.

B. Comparison With the Frequency-Refining Technique Proposed
in [21]

As mentioned in Section III-A, a frequency-refining technique was
proposed in [21], which consists in the concatenation of an analysis
filterbank, a transfer matrix and a synthesis filterbank. In this section,

Fig. 13. Comparison of the ATMS and TMS frequency-refining techniques.

we denote this technique by ATMS. In this correspondence we propose
an alternative technique which does not require the analysis filterbank
stage. We denote the proposed technique by TMS. The advantage of
the TMS technique is that it permits applying a real-valued signal at the
transfer matrix input, which reduces by two its processing complexity.
In this section, we compare the performance and complexity of these
two approaches.

As target spectral shape we consider the 11th band of the design de-
scribed in Section IV-C, i.e., , which has center frequency 3445
Hz, and bandwidth 86 Hz. For both methods we use the configuration
in [21], i.e., we use , and the filterbanks are de-
signed using digital prolate spheroidal sequences of order 0 [35] and
length 128 samples. Both methods are designed using an iterative pro-
cedure, which in the case of the TMS method is described by (11)–(13).
In both cases, we stop these iterations when the relative energy differ-
ence between and the produced spectrum is smaller than 40
dB. The spectral shapes obtained using both methods, together with the
target shape, are shown in Fig. 13. We see that both shapes reasonably
resemble each other. However, the computation of the ATMS method
requires 60 real multiplications per sample for the analysis filterbank,
28 multiplications for the transfer matrix and 60 multiplications for
the synthesis filterbank, while that of the TMS method requires only
14 multiplications for the transfer matrix and 60 multiplications for the
synthesis filterbank. In a scheme like the one described in Section IV-C,
the analysis and synthesis filterbanks are only applied once for all spec-
tral components. Hence, not using analysis filterbank is not a major
advantage in this context. However, the TMS method has still the ad-
vantage of reducing by two the complexity of the transfer matrix.

VI. CONCLUSION

We proposed a noisy sound synthesis method, which carries out
the synthesis task in the time–frequency domain, and which is able
to achieve any time and frequency resolution, for any number of fre-
quencies used for time–frequency processing. To do so, we introduced
time- and frequency-refining techniques to overcome the inherent time
and frequency resolutions limitations resulting from time–frequency
processing. Using this property, we studied the number of frequencies
which minimizes the overall complexity of the synthesis algorithm. We
did so for the two scenarios resulting from whether the synthesis pa-
rameters are computed offline or online. We compare the complexity
of the proposed designs with that of a design previously proposed by
the authors. That design was done using only frequency-refining, and
therefore a small number of frequencies was used to achieve the de-
sired time resolution. The comparison shows that the newly proposed
method leads to a major complexity reduction.

APPENDIX

Proof of (14): Let denote the th component of the output
of the filterbank in Fig. 2. Let denote the th component
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of the input of the filterbank , and let denote its output. We
have that

Let . Then,

where denotes the downsampling operation with factor .
Hence, , and (14) follows.

Proof of (16): We have that
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