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One of the critical problems in the use of digital synthesis of sound, whether
in real time or deffered time, is the establishment of a correspondence
between synthetic and natural sounds. Since 1957 the digital synthesis of
sound has been successfully used in the domains of speech and music; it
became clear, however, that one of the main problems would be to relate
it with natural sound. The first synthetic sounds were obtained with calcu-
lations of samples given by simple mathematical models without direct
reference to real sounds. However, it is musically interesting to be able to
synthesize sounds that imitate or refer to natural sounds. These sounds
would have the richness and distinctiveness of natural sounds and could
still be manipulated asis done in all systems of synthesis.

To approach such a problem, it is necessary to bring two complementary
aspects into play: the analysis and the resynthesis of signals (natural sound
waves). This leads to the setting up of relationships between the physical
(or psychoacoustic) parameters extracted from the analysis and the pa-
rameters of synthesis corresponding to a mathematical algorithm.

The analysis aspect should take into account significant parameters such
as frequency, time envelopes, microvariations (accidental noise, random or
regular modulations), and the distribution of partials. But it should also
encompass data reduction resulting from the characteristics of auditory
perception. For instance, the subjective notion of timbre cannot be always
modeled with the help of the Fourier transform of the signal only. In the
case of instruments with formants, it is useful to separate the contributions
of the resonances of the physical system (the modes of the piano, resonant
modes of the voice, and so on) from the effects of the system of excitation
(the struck or plucked string, vibrating vocal chords, and the like).

The synthesis aspect consists of the creation of digitally and musically
efficient algorithms. However, the parameters that determine the produc-
tion of sound only rarely come from existing natural sounds. There are,
however, cases where synthesis gives convincing results (for example, with
trumpet or voice). Some methods, such as additive or subtractive synthesis,
frequency modulation, or waveshaping can give adequate results, particu-
larly if they are completed by adding microvariations or combined with
other methods.

The work we present is an approach to the problem of extracting
parameters for synthesis and sound modification based on the use of
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analysis and synthesis methods that combine time and frequency informa-
tion. In this framework we deal with digital synthesis and analysis of signals
by parametric and nonparametric methods. We stress in particular the
exploration of acoustic applications of a new method of signal decomposi-
tion, the wavelet transform. This method, which is strictly speaking “time-
scale” rather than “time-frequency,” has turned out to be very fruitful,
especially in the area of analysis-synthesis.

When one speaks of analysis, one thinks in general about a mathematical
representation—as faithful as possible—of a physical phenomenon de-
scribed in mathematical form. The parameters appearing in the representa-
tion must consequently be related in a straightforward way to physical
parameters that represent the real world. In the case of audible signals, the
“real world” is not limited to the phenomena of sound production and
propagation but includes also a biological captor of the greatest impor-
tance: our ear. Although many studies in psychoacoustics have contributed
to our understanding of the auditory system, it is nevertheless true that the
only criterion for deciding on the auditory relevance of a physical parameter
is still the ear. Using this criterion, Jean-Claude Risset has developed a
powerful technique, analysis by synthesis, which consists of refining and
characterizing the parameters of a method of synthesis on the basis of its
psychoacoustical effect. These results have been quite conclusive, especially
in the analysis of the timbre of the trumpet, pointing out the importance
of the temporal aspect associated with the evolution of the spectral
components.

Methods of digital synthesis attempt to simulate the sometimes rapid
evolutions of sound through the manipulation of parameters that should -
if possible—have psychoacoustical relevance. Relating those parameters
to parameters coming out of analysis requires time-frequency analysis
methods, so that the time evolutions of spectral properties of the analyzed
signal can be described.

Time-frequency methods can be divided into two types: parametric
methods and nonparametric methods.

Methods of the first kind consist of the determination of parameters in
a specific model of sound production. Therefore they require some a priori
knowledge about the signal being analyzed. In this chapter we are mostly
concerned with “blind” analysis and so with nonparametric methods,
supplemented when necessary by parametric methods after a “precharac-
terization” phase. However, in some situations (signals with formants)
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parametric methods are very useful. This will be illustrated by the example
of cross-synthesis of two natural sounds. In cross-synthesis the charac-
teristics of one source sound are used to drive a system whose response is
based on another source sound.

An Example of Parametric Analysis: Linear Prediction

Generally speaking, digital analysis and synthesis of natural sound signals
requires the determination of a certain number of physical parameters. It
is important to be able to isolate the ones that are most significant or
relevant from an auditory point of view. When analyzing a natural sound,
one is often led to distinguish between the contribution of the source of
excitation and the contribution of the mechanical resonance of the system,
which can be modeled by means of a filter. Both aspects are almost always
present, but there are situations where the separation between excitation
and resonance is not clear-cut. This is the case, for instance, in some
percussive systems. Nevertheless in many cases one hopes to find a model
of resynthesis by designing a digital filter, starting from a knowledge of the
physics of the system that produces or analyzes the sound (figure 2.1).

If s(r) is a real signal (the natural sound wave), then this model is described

by a convolution,

s(t)y = (exr)(1) = j-e(u}ru — u)du,

where e(f) is the excitation or “source™ signal, and r() is the impulse
response of the filter, taking into account propagation within the structure.

This model is then fully characterized by its impulse response r(t).

In most cases the impulse response may be considered as fixed, for
example, in “rigid” instruments. However, there exist signals that are
produced by varying systems. Such signals give rise to time-varying filters
(speech).

elt) s(t)
Source | FResonance |——0— —

Figure 2.1 _
Schematic view of physical model synthesis. A source component generales an excitation
signal e(1) that is processed by a resonator to create the output signal s(1).
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In what follows we discuss this latter kind of signal and show how to
apply automatic techniques for identification of the characteristics of time-
varying filters and for resynthesis of signals.

We limit ourselves here to the case of filters that vary slowly, so that their
frequency response can be considered stable over a time interval T. For the
human voice T is usually between 10 and 20 ms. This is an experimental
estimate, generally accepted in speech processing (Rabiner et al. 1971,
Flanagan et al. 1970).

At this point let us also note that “resonance” and “excitation” can
originate from different sources, so that we could perform cross-synthesis.

Analysis by Linear Prediction

The linear prediction technique was originally developed for the purposes
of analysis and synthesis of speech (Atal and Hananer 1971). It consists of
representing the system in terms of a recursive filter of order p with multiple
resonances (figure 2.2). The transfer function is

N S(z) 2 |

o
B 5 Y az"
k=0

Here E(z) is the z transform of the input signal e. For a voice it can be
expressed as e = pulse train (voiced sounds such as vowels) or e = gaussian
white noise (nonvoiced sounds such as consonants).

The analysis of a signal then consists of the determination of the coefTi-
cients a,, which can be performed as follows (let us suppose that e(t) is a
white gaussian noise):

The system is characterized by

R(z)

s(n) = i a,-s(n — k) + e(n).
k=1

o Nan *n
Linear
zak‘n-k prediction
k
Figure 2.2

Schematic view of linear predictive analysis by means of a recursive filter
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Let 5(n) be the estimated value of s(n). We write §(n) in the form
§m) =Y a-stn — k)

The prediction error is

C(n) = s(n) — 5(n) = s(n) — 3. a,-s(n — k).

The d, are chosen so as to minimize the mean square error:

2

{Cm)*) =Z(S(ﬂ) "?ﬁys{n = k)) (1)

Differentiating equation 1 with respect to @, j=1...p, and setting
the derivatives equal to zero, we obtain a system of p equations with p
unknowns:

Ya, Y s(n—ks(n—j)=) sn):sn—j) J=1...p 2)

n n

We can write equation 2 in matrix form:
dla] = .
Here @ is the autocorrelation matrix of the signal,
D, ;= 2 s(n —i)-s(n —j),
¥ is the autocorrelation vector of the signal,
V=

and [a] is the vector of components d,.

In practice one has to calculate the matrix ® for every time interval
compatible with the evolution of the signal and then solve the corre-
sponding system of equations so as to obtain the prediction coefficients
that characterize the resonance aspects of the system (Makhoul 1975,
Kronland-Martinet 1988a, 1988b).

Subtractive Resynthesis by Predictive Filtering

Having identified the discrete evolution of the filter that serves as model
for the instrument, we can perform the resynthesis by

s(n) =Y a3, + e(n)
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The excitatory signal e can be obtained from the signal s(1) either by
inverse filtering (Moorer 1979) or else—if the mechanism of sound produc-
tion is simple enough-—by mathematical modeling (such as a simplified
plucked string).

It is important to also notice the possibility of modeling e(r) with the
help of parameters of global synthesis (frequency modulation, amplitude
modulation, waveshaping). This procedure yields—in addition to a signifi-
cant reduction in the volume of data—a possibility of simplified control
of the time-dependence of the signal.

Next we examine the possibility of using an excitation signal different
from the one that corresponds to the instrument under consideration or
its model. We shall now see an application of this possibility, which gener-
alizes the notion of subtractive synthesis and opens up broad prospects for
the synthesis of musical sound.

Transformation of Sound: Cross-Synthesis

The cross-synthesis of two sound signals is the construction of a hybrid
signal that combines the resonant and the excitation aspects of two distinct
sounds (Risset and Wessel 1982). We give here an example of cross-synthesis
between voice and cymbal. This example was obtained in collaboration
with the Groupe de Musique Expérimentale de Marseille (GMEM). Of
course this is just one example out of various possible hybrids (voice +
cello, voice + voice, and so forth).

The figures that follow are the spectral representations of, respectively,
the voice signal (figure 2.3), the cymbal signal (figure 2.4), and the result of
cross-synthesis (figure 2.5).

Here the cross-synthesized signal has been obtained by using the
unfiltered cymbal signal as the excitation. This is justified by the fact that
such cymbals do not present pronounced resonances.

We can see that resulting signal combines the excitation information of
the cymbal (the distribution of partials) and the resonances of the voice (the
spectral envelope). The resulting auditory effect is a “talking cymbal.”

Parametric analysis obviously has the advantage of considerably re-
ducing the amount of data necessary for the description of sound. Parame-
tric analysis, however, is valid only if the parametric model corresponds to
the actual sound generation mechanism. If this is not the case, the results
obtained cannot be exploited and, in general, give rise to unstable filters.
We shall not discuss here this delicate problem.
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Spectral representation of a voice signal

Nonparametric Analysis

Nonparametric analysis methods often use the concept of local .‘\*pecrrm?r.
where the signal is decomposed into a sum of complex exponentials (as in
the short-time Fourier transform), weighted by a function that plays the
role of a time localization window. This procedure is well suited for the
identification of quasi-periodic structures in the signal; however, it is not
appropriate for the study of rapid transients because events. of short dyra-
tion are delocalized, and their energy is distributed over a region determined
by the width of the window. ‘ .
Taking into account a simplified model of the auditory system, Whl'Ch
consists of the representation of the receivers (ears) as a bank of filters with
constant éf/f for frequencies higher than about 800 Hz, we are Iempled. to
look for a technique of analysis that stresses the time aspect at high
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Figure 2.4
Spectral representation of a cymbal signal

frequencies and the frequency aspect at low frequencies. These requirements
are satisfied by a new technique of analysis and synthesis, namely, the
wavelet transform.

The wavelet transform is a linear transformation that consists of decom-
posing an arbitrary signal into clementary contributions. Those contribu-
tions called wavelets are generated by dilation and translation from a
mother function called the analyzing wavelet.

One of the advantages of such a transform is the fact that one can choose
(and consequently adapt) the analyzing wavelet depending on the informa-
tion in the signal that one wants to point out. The choice of analyzing
wavelet is subject only to some mathematical admissibility conditions that
are not very restrictive in practice. The wavelet transform associates to a
real signal (a real-valued function of time), a function depending on two
variables (time and scale). Hence it gives rise to a two-dimensional represen-
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Figure 2.5
Spectral representation of cross-synthesis with a cymbal and a voice

tation (picture) that contains all the information carried by the signal.
Because the transform is invertible, one can interpret these pictures as
acoustic signatures of the sound. Our experience has indicated that it is
useful to assume that the analyzing wavelet is “progressive,” that is, that
its Fourier components for negative frequencies vanish. Under these condi-
tions the wavelet transform is complex valued. It can be suitably described
by its modulus and its phase.

This double representation is interesting on several accounts, in particu-
lar because it establishes a relation between the result of the wavelet
transform and physical parameters associated with the signal. Indeed the
conservation of energy by wavelet transforms makes possible the interpre-
tation of the square of the modulus of the transform as an energy density
localized in regions of the time-scale half-plane that depend on the choice
of the analyzing wavelet. Furthermore the phase of the wavelet transform
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can be used to define an instantaneous frequency at a given scale. Finally,
the wavelet transform can be used to localize discontinuities and to extract
modulation laws.

Before applying this method to the analysis, synthesis, and modification
of real sounds, we describe the corresponding mathematical formalism. It
is convenient to discuss in parallel wavelet transforms and the well-known
short-time Fourier transform used in the phase vocoder because the two
methods have many points in common as well as significant differences.

Elementary Functions: Grains

The underlying idea of any linear transformation associating a two-
dimensional representation to a signal is the decomposition of this signal
in terms of elementary grains, such that their sum, multiplied by appropri-
ate coefficients, allows the reconstruction of the original signal (Gabor
1946). Such an approach is clearly useful if every coefficient has a physi-
cal or, even better, psychoacoustical interpretation. This interpretation
depends strongly on the choice of the basic grains used and in particular
on their behavior under variations of the parameters that define the
representation.

To obtain decompositions of the kind that we mention, we have to define
a family of elementary functions, preferably well localized with respect to
the two variables of the representation.

In the case of wavelet transform, the elementary functions are copies of
a mother function g() (figure 2.6) that have been translated and dilated (or
contracted, that is, subjected to a change of scale):

o (' = r) 3)
gr.ﬂ ﬁg a b o

Here t is the parameter of translation in time, and a is the rescaling (or
dilation) parameter. 7 is any real number, and a is necessa rily positive. The
function g(t) is called the analyzing wavelet.

The localization in time of function 3 is its effective support region. The
frequency localization of this grain is given by the Fourier transform of
gr.a0):

d..Jw) = Jadlaw)e™", (4)

where § is the Fourier transform of g.
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Figure 2.6

Elementary wavelets used for the wavelet transform in the time-dilation domain. The
number of cycles in the wavelet does not change.

Modulus

Frequency

Figure 2.7 .
This family of curves represents the Fourier transform of the wavelet taken for various
values of the scale parameter. The ratio Af/f does not change.
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Figure 2.8
Elementary wavelets used for the Gabor expansion in the time-frequency domain

This localization depends on the parameter a (figure 2.7). The resulting
decomposition will consequently be at Aw/w = constant. Consequently
wavelets can be interpreted as impulse responses of constant-Q filters.

The short-time Fourier transform uses elementary grains that are trans-
lations in time and in frequency of a mother function h(z) (figure 2.8):

h..oo(t) = h(t — T)e'*", (5)

where 7 is the time translation parameter, o, is the frequency translation
parameter, and h(t) is the window that ensures the time and frequency
localization of equation 5.

In this case the time localization is given by the effective region of h(r),
and the frequency localization is given by the Fourier transform h(w) of
the window. One has

i!t,m.-,(w) = El((u _ wo}é’i("'_ (6]

An important aspect of this construction is that the localization width
of equation 6 does not depend on w,, (figure 2.9). The resulting decomposi-
tion is consequently of Aw = constant type. The elementary grains can be
interpreted as impulse responses of filters of constant width.

4
-
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Figure 2.9

This family of curves represents the Fourier transform of the elementary wavelet usfbd for
the Gabor expansion. They are obtained from each other by frequency shift. The width Af
is constant.

Decompositions of an Arbitrary Signal

The time-scale and time-frequency transforms are obtained by decomposi-
tion of a signal of finite energy into elementary grains. The coefficients of
this decomposition can be calculated in general as scalar products (correla-
tion) between the signal and the grains, and represent the “weight” associ-
ated with each one of them. This is not immediately obvious because the
grains are not mutually orthogonal, but is nevertheless true (Grossmann
and Morlet 1985).
Consequently the wavelet transform is given by

S(r,a) = (g...s) = Jé,.ﬂ(r}smdf - \}d Ja(r ; -r-)s[r}dr. (7)

where the bar denotes complex conjugation.
In view of the Parseval relation, an expression equivalent to equation 7
and written in terms of Fourier transform is given by

S(r,a) = (g, 5D = {d,..|5> = jér.ulwlﬁtwl dw

= \/!‘-i J.ﬁ{am},‘?{m}(”""'drn, (8)

Similarly the short-time Fourier transform is given by
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T(1,wp) = By 0,l5) = J'ﬁ,.%(r)s(f)dt = je‘“""ﬁ([ — 1)s(t)dt, 9)

T(t,w0) = Chy 8> = jﬁr,wotw}ﬁ(w}dm (10)

Let us define a voice as the restriction of the wavelet transform (or,
respectively, the short-time Fourier transform) to a fixed value of the scale
parameter a (respectively, the frequency @,). In other words a voice is the
output of a filter with impulse response given by the corresponding grain.
The transform so defined can be represented by a continuous filter bank
with constant Q (wavelet) or with constant width (as in the short-time
Fourier transform).

Inversion: Admissibility Conditions

Because the transforms just shown are linear, we may ask for an inversion
(or resynthesis) formula by “resummation” of elementary grains weighted
by the coefficients (granular synthesis).

In the case of the wavelet transform, we obtain (for progressive wavelets,
see “Analysis of Signals: Graphical Representations™)

| dtda
s(t) = — | S(r,a)g, 1) —5—,
() ngifﬁf}g,()az (1
where ¢, is a constant that depends on the choice of the analyzing wavelet:

A)|2
Cp= ZEJ I—q—{f )—}--h—- daw. (12)

«

Looking at equation 11, we notice that inversion is possible only if ¢,
exists, that is, if the integral in equation 12 converges. This condition that
an analyzing wavelet has to satisfy is called the admissibility condition. In
practice this condition reduces to

~E, = Jig{”ﬁ dt < +oo (g has finite energy),

—g(0) = J.g{t) dt =0 (g has zero mean value, that is, no DC bias).

There exist other formulas for the inversion of wavelet transforms. One
of them is useful because of its simplicity and consists of a reconstruction
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of the signal by appropriate summation of coeflicients at a fixed time:

s(r)=ngS(r.a}§3—z, (11"

where k, is a constant that depends on the choice of the wavelet g.
In the case of the short-time Fourier transform, we obtain

0 =" [m, i oD B0, (13)

where ¢ = 1/2n is now independent of the choice of h(t). However, h(t) has
to be of finite energy.

E, = J‘lh{t)lzdt < 4+ (14)

Properties of the Wavelet Transform

Linearity The wavelet transform and the short-time Fourier transform
are linear. This property is very useful. It means that the transform of the
sum of signals is the sum of their transforms, which is convenient for the
analysis of polyphonic signals. It should be remarked that the well-known
Wigner Ville time-frequency representation is not linear but rather bilinear.

Conservation of Energy The total energy of the signal can be expressed
in term of the values of the transforms by

drd
E = J-ls(r}lzdr - Lsn,ullz “i(f
(‘g a

= l jl'f‘(r, w,)|* dt dwy, (15)
2nE,
where E, = [[h(n)]dt.

These expressions allow us to interpret the square of the modulus of the
transforms as a density of energy distributed over the domains of represen-
tation. In the case of the short-time Fourier transform, this representation
is well known; it is the spectrogram.

Constraints on the Coefficients The clementary grains are, in general, not
orthogonal:
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<g!.d"gt'.ﬂ"> g fgr,a(t)gt',a’(!} df 7"& 09

(16)

<hr,wulht',mo'> = J.Er,mo{”hr’,wo’(” df 9& 0

The coefficients of the transform are constrained to satisfy

da’ dv'
S(z,0) = Jp,(r, @, @)S(.a) 5, (17)
" where pg(ts ﬂ; t: ﬂ,) = (I/Cg}<gt.a’gt'.a'>-

For the coeflicients of the short-time Fourier transform, one has

T(t,w) = jp,,(r,w;r’, o')T(t, w')dw’ d, (18)

where p, (1, w; 7, ') = (1/21E,) Che, ol By .

The relations in equations 17 and 18 are important in the interpretation
of the transform. One can show that it is possible to find a grid such that
the analysis coefficients at the points of the grid allow an arbitrarily
accurate reconstruction of the coefficients on the representation plane.

For wavelet transform the points of such a grid are of the form shown
in figure 2.10A, that is, {a/; kt,a,’}, where j and k are integers, and a, and
To are real numbers that depend on the choice of the wavelet (Daubechies
1988).

For the short-time Fourier transform, the grid is of the form shown in
figure 2.10B, that is, {mt,;nw, }, where m and n are integers, and w, and
1, are real numbers that depend on the choice of the window h(t).

Under certain conditions imposed on the grains, it is possible to construct
orthonormal bases corresponding to some of the grids just defined. In the
wavelet case the grids are dyadic (a, = 2). For details, see Meyer (1989).

The relations in equations 17 and 18 show that an arbitrary function of
two variables need not be the transform of a signal. This may seem restric-
tive, if one wants to perform a synthesis starting from a picture that has
been arbitrarily constructed or obtained by deformation of an existing
transform. However, it can be shown that the inversion formula (equation
11) automatically projects into the appropriate subspace of functions that
are wavelet transforms of signals.
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Comparison of analysis grids for the wavelet transform (A) and the short-time Fourier
transform (B)

Behavior of the Transform under Translation and Dilation of the Signal
The wavelet transform of a signal changes in a simple way if the signal is
translated or rescaled. Let s(t) — S(1, a), that is, let S(z,a) be the wavelet
transform of s(t). Then s(t — t,) = S(r — t,,a) that is, the wavelet transform
of the shifted signal can be obtained by a natural shift of the original
transform. Also one has

| t T a
sl |—=5[=.=].
\,f"(,l ; (’t) (;- ;-)

The short-time Fourier transform is covariant under translation in fre-
quency. Let s(t) = T(t,w), then s(t)e"™ — T(t,w — wy). chew.fer, it is not
covariant under translation in time s(t — 1) — T(1 — 14, w)e™ """,

It is often preferable to be covariant under time translations rather than
under frequency translations. This can be achieved by using the modified
grain:

E!.w“} == h{f S r)el'li'—tlm.
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This is the grain to be used in the section “Analysis of Signals: Graphical
Representations.”

Localization One of the aims of time-frequency representations is to
associate to the coefficients some information about the signal that is
simultaneously localized in time and in frequency. In the case of wavelets
let us assume that g(r) and g(w) are negligible, respectively, outside an
interval [£,in, max] and Iy, ©5.,]- Then g, ,(t) and g, ,(w) have, respec-
tively, the regions [at,;, + t,at,,, + 1] and [w,./a, o, /a]. Conse-
quently the domain of influence in time of a value s(t,) of the signal is a

- cone pointing toward 1 = t, and defined by the lines illustrated in figure
2.11A, that is,

ﬂ[min + IO =1, ﬂlm,, + {ﬂ =T.

The domain of influence in frequency is bounded by the two horizontal
lines (figure 2.11B):

W,in/@ = constant, (g /@ = constant.
to Th-.
a
(a)
Th..
a
(b)
Figure 2.11

Wavelet domains of influence. (A) Domain of influence in time. (B) Domain of influence in
frequency.
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(b}

Figure 2.12 ) ) o
Short-time Fourier transform domains of influence. (A) Domain ol influence in time. B)
Domain of influence in frequency.

In the case of short-time Fourier transform, let us suppose that h()
and h(w) are negligible, respectively, outside an interval [t imins fmax] and
[0pnins @max 1+ then b, (1) and !‘r,‘wu{w) have as a range, respectively,
(i + T lax + 7] AN [0 + g, O + @0 ). Consequently the domain
of influence of a point s(t,) is a strip given by (figure 2.12A)

5= l'min F ‘(]- T = IInuu + IIﬂ'

The domain of influence in frequency is bounded by the two horizontal
lines (figure 2.12B)

+ w, = constant, Wpay + W = constant.

“‘]min

Algorithms for the Calculation of the Wavelet Transform

The short-time Fourier transform can be easily implemented with the help
of fast Fourier transform (FFT) algorithms. Because the wavelet transform
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is a recent method, we describe the digital techniques used in its imple-
mentation and present methods that implement the wavelet transform in
real time.

Our first implementation of wavelets was done in 1987 on the SYTER
real-time signal processor (Allouis and Mailliard 1981). This system con-
sists of a host processor and a real-time processor that can implement
transverse filters. This classical filtering method has been used with impulse
responses given by dilated and contracted versions of wavelets. For a fixed
value of the dilation parameter, equation 7 consists of a convolution
between the signal and the time reversed wavelet g(—t). The calculation is
discretized:

Ym) =) g X(n—1—i)

(we suppose here that the sampling rate is 1).

Here Y(n) is the nth output sample, g; the ith value of the wavelet, and
X (n) the nth input sample. For each value of the dilation parameter a (for
each “voice”), the host processor calculates the corresponding discrete
values of the wavelet and transmits them to the processor, which then
calculates the wavelet transform.

This method of calculation has the disadvantage of not being compatible
with real-time operation. The convolutions have to be performed on an
arbitrarily large number of points because—for a fixed sampling rate—the
dilated wavelet is defined on a large number of samples. This is an important
consideration in the case of sound signals. If the analysis takes into account
n octaves (here n can be of the order of 10), then the ratio of the number of
samples between the most dilated and the most contracted wavelets is 2",
Consequently the number of operations (multiplications, additions) grows
as 2"

A different algorithm based on the notion of decimation of signal has
been developed and implemented on SYTER, called the algorithme a trous
(“algorithm with holes”). It allows a parallel and hierarchical structure of
calculations, while keeping fixed the number of operations as the scale is
changed. We give here only a sketchy indication of the method of calcula-
tion and refer the reader to Holschneider et al. 1989. The scheme is shown
in figure 2.13A. The information necessary for this algorithm is, on the one
hand, discrete values of the analyzing wavelet G and, on the other hand,
the coefficients of a filter f that performs a polynomial interpolation of the
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Figure 2.13

Implementation of the wavelet transform. (A) Transverse filter used for the calculation of
the wavelet transform in the SYTER digital signal processor. T is the unit time shift. (B)
schematic view of the algorithme a trous.
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wavelet. One can so construct the filter F = 1 + TDf, where T is the unit
shift, D is the operation of dilation by 2:

Df(i) = f(é) for even i,

= 0 for odd i,

and 1 is the identity (the filter corresponding to an impulse response that
is zero everywhere except for i = 0, where it is 1).

A hierarchical structure enables us to use partial results calculated for
higher voices (figure 2.13B).

Analysis of Signals: Graphical Representations

Time-frequency analysis of audio signals has been the subject of numerous
publications; we refer the reader to the bibliography. The aim is to extract
detailed information about the behavior in time and in frequency (or scale)
to help with the characterization of sound phenomena in view of reproduc-
tion or transformation of natural sounds. Although the wavelet transform
and the short-time Fourier transform are conceptually closely related, they
are nevertheless different in the way they cover frequency range. We have
seen that the wavelet transform can be described as the output of a bank
of filters with Af/f = constant, whereas the short-time Fourier transform
performs a filtering with Af = constant and so can separate the harmonics
of the signal (provided that Af is smaller than the fundamental frequency
of the signal). By its very nature the short-time Fourier transform tends to
decompose an arbitrary signal into harmonic components, whereas the
wavelet transform allows free choice of the elementary function or grain of
the decomposition.

Before visualizing the behavior of the two transforms, let us discuss the
quantities to be represented. Energy conservation (see “Properties of the
Wavelet Transform™) is of capital importance, and we represent the
modulus (or squared modulus) of the transform to obtain a physical inter-
pretation of sound phenomena in terms of energy distribution. To obtain
a realistic representation of the modulus of the transform, it is useful to
separate positive and negative spectral components so as to avoid beats.
This can be obtained by requiring the analyzing wavelet to the “progres-
sive,” that is, to contain only positive-frequency components.
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dlw) =0, ifw <.

Such a condition is easily satisfied for wavelet transform for all r and a. It
cannot be satisfied for the short-time Fourier transform because it can be
destroyed by translations in frequency. Figure 2.14 shows the short-time
Fourier transform and the wavelet transform of a triangle function. The
starting analyzing function is the same for the two transforms. Only the
construction of the families is different. The starting function is a modulated
gaussian:

f(t) = exp(—t3/2) exp(iw,t) + small corrections. (19)

In the figure the modulus of the transform is proportional to a local density
of black dots. The phase is represented in the same way; this allows an easy
visualization of lines of constant phases corresponding to the transition
between 2n and 0. The horizontal axis is time, and the vertical axis is
frequency (respectively, the negative logarithm of the scale).

One can see in the figure that the two transforms suggest different
interpretations of the phenomenon being studied. The wavelet transform
allows a localization in time that improves as one progresses toward small
scales. This is helpful for detection of discontinuities (Grossmann et al.
1987). On the other hand the short-time Fourier transform looks for
harmonic structures in the signal showing horizontal equispaced striations
in the figure.

From the point of view of psychoacoustics, wavelet transforms seem
better adapted to the analysis of sound signals because they favor the
temporal aspect at small scales and the frequency aspect at large scale. It
is sometimes convenient to have a detailed description in terms of frequency
and consequently to use a short-time Fourier transform. This aspect is
developed by Arfib in chapter 3; we consequently focus more on the possi-
bilities for analysis and synthesis provided by the wavelet transform.

Five Examples Interested readers will find listed in the references many
articles that interpret the behavior of coefficients of wavelet transforms.
Here we restrict ourselves to five examples of the wavelet transform applied
to real signals. A single figure can represent both the modulus and the phase
of the transform. In the original images, the modulus is coded with the help
of a palette of colors represented at the top-right corner of the image. The
phase is coded by a density of black dots in a way that has already been
discussed.
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Figure 2.14

Transforms of a triangle function. (A) Modulus of the wavelet transform. (B) Phase of the
wavelet transform. (C) Modulus of the windowed Fourier transform. (D) Phase of the
windowed Fourier transform.
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Figure 2.15
Wavelet transform image of the first 32 ms of a clarinet tone

Figure 2.15 represents the first 32 ms of a clarinet sound. Taking into
account the domain of influence discussed in the section “Properties of the
Wavelet Transform,” one can conclude that successive harmonics appear
at different times. There exist algorithms for the estimation of frequencies
and of modulation laws associated with the components. These algorithms
are based on the study of the phase of the transform (Guillemain et al. 1989)
and are discussed later.

Figure 2.16 represents the same signal that has undergone a transforma-
tion realized by P. Dutilleux (Laboratoire de Mécanique et d’Acoustique,
Marseille) in the framework of a study for a “sound sculpting machine” for
the Museum of Music, Paris. The sound is cut into slices of equal length.
To each slice one associates a linear amplitude modulation. The wavelet
transform has turned out to be a very powerful tool for the visualization
of the modifications so produced. In particular it provides a measure of the
discontinuities introduced by the procedure and an estimation of the energy
distribution generated by the modulation over the spectral components.

Figure 2.17 represents three successive notes on a trombone. Here again
it is easy to interpret the distribution of the energy along the scale and time

Figure 2.16
The same sound shown in figure 2.15, cut into equal-length slices and amplitude modulated

Figure 2.17
Wavelet transform image of three notes of a trombone



72 Time-Frequency Representations

Figure 2.18
Same signal as in figure 2.17, processed by a bandpass filter

axes. This is shown clearly by considering the same signal filtered by a
bandpass filter, shown in figure 2.18. One can so characterize the effect of
the filtering on the signal and, most important, visualize possible transient
effects in the case of time-varying filters.

The last example, shown in figure 2.19, is an illustration of the usefulness
of a time-scale decomposition and of the difference between time-scale and
time-frequency. The problem here is to detect within a signal a particular
feature that can appear at an arbitrary scale. If, for instance, one wants to
detect octave intervals appearing in a sound sequence, it is advantageous
to decompose the signal in terms of elementary contributions that are
adapted to this purpose. A wavelet with two bumps in the frequency
domain at an octave distance to each other allows us to detect the occur-
rence of octaves. The local energy in the time-scale half-plane will be higher
at times when the signal contains octaves than at other times (other
parameters being equal). In such a way one can also construct wavelets
adapted to detection of other chords or other predefined structures.
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Figure 2.19
Wavelet transform adapted for octave detection. The four instances of octaves show up as
dark spots in the wavelet transform.

Parameter Estimation with the Help of Wavelet Transforms

The information contained in the representations just described is sufficient
for an exact reconstruction of the analyzed signal. It is often useful to
extract from these representations some parameters that describe physical
phenomena occurring in the signal. Without entering into mathematical
details, we briefly describe some of the possibilities opened by wavelet
transforms in the field of detection of important features of sound signals.
A dominant role among those features is occupied by spectral components
and by frequency and amplitude modulations. They allow synthesis of the
signal by additive techniques or by frequency modulation. So far these
methods have produced convincing simulations and characterizations of

signals. The parameters so measured have not yet been used for resynthesis
of sound.
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Estimation of Spectral Lines

The aim here is to find on the wavelet transform side the information
necessary for the extraction of monochromatic components modulated in
amplitude. The extraction is performed automatically, that is, it does not
require a visual inspection of the two-dimensional representation described
previously.

A spectral line is defined as a function of the form s(t) = A(t)e'', where
A(t) is the amplitude modulation law, and w is the frequency.

The search for spectral lines consists of the identification of the function
A(t) and of the number w. We discuss here the detection of such lines
contained in signals of the form
s(y="Y A)e’ + b(r),

J finite
where b(t) is an arbitrary signal that does not contain discrete spectral
components (noise).

Before we describe an iterative method that detects these parameters, let
us examine the case of a monochromatic signal.

Consider the signal Ae'**¢, whose wavelet transform is given by

S(r,a) = \/adglaw, e+, (20)

where g is the Fourier transform of the wavelet.

To facilitate the interpretation of equation 20, we suppose that §(w) is
real; this condition is satisfied, for example, by the wavelet equation 19.
The phase of the wavelet transform is then equal to the phase of the signal
itself, for every value of the scale parameter a. The modulus of the transform
is constant on all lines of the fixed-scale parameter. In the case of real-
valued monochromatic signals, the previous statement remains true, pro-
vided that (o) = 0 on the negative axis, so that interference phenomena
are avoided. This is the motivation for the introduction of “progressive”
wavelet in the section on graphical representations.

It is useful to define the instantaneous frequency of a voice S,(7) (the
restriction of the transform to a fixed value of the scale parameter) by

do,(t)

nc(r) - ""'h__s

where ¢,(t) is the phase of §,(1), S,(r) = M,(r)exp(ig.(1), Ma(7) = [(S4(2))]-
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If the signal is monochromatic, then Q,(t) = @,. Consequently the instan-
taneous frequency obtained from the wavelet transform of such a signal is
equal to the frequency of the signal and allows its determination. Further-
more the modulus of the transform of the monochromatic signal in equa-
tion 19 is given by

M, = /aA|jaw,)|

Consequently, knowing the analyzing wavelet, we can also determine the
value of A from the wavelet transform.

More generally one can show (Guillemain et al. 1989) that it is possible
to estimate the frequency of spectral components contained in a signal by
taking an average of the instantaneous frequency of its wavelet transform
over a suitably chosen interval. The actual method of estimation cannot
be given here, and we refer the reader to Guillemain et al. 1989. Figure 2.20
represents the wavelet transform of a sum of three spectral lines. The
reduced frequencies are 1, 1.75, and 2.5. One can see the instantaneous
frequencies and amplitude modulation laws for values of the scale parame-
ter that correspond to the fixed points defined previously. The estimation
of frequencies and amplitude modulation laws is excellent and has already
been used by P. Guillemain to extract lines in nuclear magnetic resonance
(NMR) spectroscopy.

Estimation of Modulation Laws

The determination of the law of frequency modulation in a signal can be
of major importance, particularly if one wants to use methods of resynthesis
such as FM (Chowning 1973). The main idea of the method that we describe
is that the information contained in the signal is not distributed uniformly
over the time-scale half-plane. Consequently, for purpose of reconstruction,
certain parts of the half-plane carry the essential information, and it is
crucial to be able to determine these parts.

Under some mathematical assumptions that are not discussed here, one
can extract from the wavelet transform its essential points (corresponding
mathematically to points of stationary phase) (Escudié et al. 1989). They
describe in the half-plane a trajectory called the ridge.

The usefulness of the ridge stems from the fact that the restriction of the
wavelet transform to it is sufficient to obtain a good approximate recon-
struction of the signal up to a known amplitude factor and up to a specific
phase. This restriction will be called the skeleton of the transform. As an
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Figure 2.20

Extraction of spectral lines. The signal is a sum of three components with frequencies
1, 1.75, and 2.5. The amplitude modulation laws are linear. The first and the third lines
decrease; while the second increases. (A) Wavelet transform of the signal (modulus and
phase). (B, C, D) Instantaneous [requency and amplitude modulation law for each
component.

Application of Time-Frequency and Time-Scale Methods 77

example, figure 2.21A is the ridge of a signal obtained by FM synthesis:
s(t) = Asin{at + I(t)sin(pr)}.

Here the modulation index I(t) increases linearly.

Figure 2.21B gives the phase of the skeleton of the transform, calculated
by N. Delprat (Laboratoire de Mécanique et d’Acoustique, Marseille). The
linear part can easily be estimated by the linear regression method, giving
the parameter « (the carrier). Figure 2.21C represents the phase of the
skeleton after subtraction of the carrier. It is thus possible to identify the
modulating frequency f and the law of variation of the modulation index

1(¢).
Resynthesis by Means of Wavelets

The reconstruction formulas equations 11 and 11’, show that there are two
natural methods for resynthesizing a natural sound starting from its analy-
sis by a wavelet transform: granular synthesis and generalized additive
synthesis. This section contrasts these two approaches.

Granular Resynthesis

Equation 11 suggests an approach to resynthesis by summation over a set
of dilated and translated wavelets, with complex-valued coefficients derived
from the transform (figure 2.22). The digital implementation consists of
associating a wavelet with an appropriate weight to each point on the
analysis grid. These wavelets are elementary grains with overlap in time.
Synthesis is then carried out as a sum of those contributions. Notice that
because the coeflicients associated with wavelets are in general complex,
the resynthesis grains will in general have a different form due to phase
shifts. The basic module of the instrument that perform this kind of syn-
thesis is given by figure 2.23. The analysis is performed here with a displace-
ment step equal to a quarter of the length of the wavelet. This requires four
wavelet generators that are successively activated. The multiplexer dis-
tributes the values of the transform to the four generators of the wavelets.

F. Boyer has developed at LMA special unit generators and integrated
them into the program Music V (Boyer and Kronland-Martinet 1989) to
be able to use this method of synthesis. The results are very good and allow
a reconstruction of almost perfect audio and digital quality using coeffi-
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Figure 2.21

Estimation of modulation laws. (A) Ridge corresponding to a signal obtained by frequency
modulation synthesis. The modulation index increases linearly. (B) Unwrapped phase of the
skeleton of the transform. (C) Unwrapped phase of the skeleton after subtraction of the
carrier. It is possible to identify the modulating frequency f§ and the law of variation of the
modulating index I(t).
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Figure 2.22
Grranular resynthesis by summation over a set of dilated and translated wavelets with
complex-valued coefMicients derived from the transform

Modulus and phase of the transform
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Figure 2.23

Module for granular resynthesis. The frequency depends only on the dilation parameters
associated with the voice under consideration. The complete instrument requires as many
modules as there are voices in the analysis.



80 Time-Frequency Representations

cients on an appropriate grid, for example, a dyadic grid and the wavelet
of equation 19.

Generalized Additive Synthesis

Equation 11’ allows the reconstruction of a signal at time t by summation
of the values of the transform for fixed t = t. If the wavelet is complex
valued, the values of the transform are also complex, and every voice (for
fixed a) can be defined as

Sa(t) = xa(t) + iy,(t) = A,(t)e'*,

where M,(t) is the modulus M,(t) = (x,> + y,2)'?, and ¢,(t) is the instan-
taneous phase ¢,(t) = arctan(y,/x,).

We are here in a situation similar to the one encountered with the phase
vocoder. The same reconstruction method can be used and the problem is
reduced to the identification of instantaneous frequency or, more precisely,
to the determination of the reading increment for a sine table. Those
procedures are described by Moorer (1978).

The discretization of equation 11’ on the grid a = 2/ compatible with the
wavelet of equation 19 gives

s =k, Y S(ta)a"'?

=2

=k, sz A,(t)cos(p,(t)a™'?  (taking the real part).

The resynthesis is then of generalized additive type because the oscilla-
tors are modulated both in amplitude and in phase. The basic module of
the instrument that realizes this kind of synthesis is given in figure 2.24.

Transformation of Sound Signals

The resynthesis of sound signals has enabled us to verify the power of the
method by numerical tests as well as by listening. However, the main
interest of the decompositions that we studied lies in the possibilities of
characterization (by images), of modeling signals, of data reduction, and of
intimate transformation of sounds. This last aspect is very attractive for
musicians who are searching for new auditory sensations. Now we show
how wavelet transforms can be used for the modification of audio signals
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Figure 2.24
Module for generalized additive resynthesis. The complete instrument requires as many
modules as there are voices in the analysis.

by altering the values (coeflicients) between analysis or synthesis or by a
deformation of the time-scale half-plane.

Among possible modifications one can distinguish between those that
are obtained by linear action on the values of the transform and those that
require nonlinear operators (K ronland-Martinet 1989). The latter are likely
to be more interesting, but they require a more complicated mathematical
formalism. We present here only the main ideas and an intuitive interpreta-
tion of the values of transform (the coefficients). These allow us to get a feel
for the audio results obtained through modification.

The most obvious linear modification consists of performing a partial
resynthesis by restricting the original analysis grid in time or scale or both.
For instance, resynthesis that takes into account only the voices corre-
spondig to small scales has the effect of a highpass filter, provided that the
analyzing wavelet corresponds to a filter with a single resonance, or to a
“high-scale” filter. More generally the interpretation of wavelet coefficients
at a fixed scale as the output of a filter allows us to understand the effect
of a constant gain on each of the voices. We can so obtain a “scale equalizer™
with gains that can vary in time without stability problems.

Another interesting linear transform consists of time-shifting the ana-
lyzing voices with respect to each other. The physical interpretation here is
that of an acoustical wave. The components of the wave propagate with
different speeds, depending on their scale (dispersion). The resulting signal
propagates in clusters, yielding an “aquatic” effect.
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The nonlinear transformations we consider consist of separate modifica-
tions of the modulus and the phase of the wavelet coefficients. The results
so obtained can be understood intuitively if one realizes that the modulus
(or more precisely its square) plays the role of a density variable for energy.
Thus it gives the distribution of the total energy in time and in scale
(resonant aspects). On the other hand the phase gives the “oscillation,” that
is, the excitation. Such an interpretation of the coefficients allows us to
make guesses concerning modifications that perform changes of the fol-
lowing types:

* Transpositions without change of duration (or conversely, say, stretching
in time without changes in pitch)
» Harmonization or brightness effects
* Hybridization or cross-synthesis of signals.
Let us consider in a little more detail the eflect of frequency transposition

without changes of duration. To do this, consider first the monochromatic
signal

s(t) = Acos(wt)
As we saw previously, the values of its wavelet transform are given by
S(t,a) = \/aAﬁ(aw)e‘“".

We have seen that the phase of the coefficients is the phase of the signal
itself, provided that g(w) is real. A frequency transposition of ratio n can
thus be obtained simply by multiplying the phases of all coefficients by n.

Although the mathematics does not allow us to do this, we can generalize
this procedure to more general signals and multiply the phases of coefficients
by n to obtain a transposition effect.

)=k, T A,(t)cos(ng,()a "
a=21

Notice that n may depend on time; one obtains time-varying transpositions.

Similarly one can obtain brightness effects by adding harmonics at each
scale in a synchronous way. One has to perform a multiple transposition
with an integer ratio:

)=k, T 4,0 T C,cos(np,)a
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Figure 2.25
Resynthesis module for “brightness™ effect using nonlinear distortion

The algorithm can be simplified if one notices that one is performing here
a nonlinear distortion f, which can be written, with the help of Chebychev
polynomials, as (Arfib 1979)

f{.\') - ; Ck Tl(x)s

with T,(cos @(t)) = cos(ke(t)).

The corresponding instrument Music V is represented in figure 2.25.

For a final example, we present a modification that is directly related to
the cross-synthesis of two signals. The interpretation of the phase as excita-
tion and of the module as resonance brings us naturally to “sound hybrid-
ization,” by synthesis using the modulus and the phase of two distinct
sounds. It is of course possible to perform other transformations as inter-
mediate steps. Some of the examples can be heard on the soundsheet in
Kronland-Martinet 1989. Almost all of the examples were realized with
Just one voice per octave (a total of eight voices).

Conclusion

Wavelet analysis provides an extremely powerful tool for the analysis of
audio signals. The degree of refinement of such an analysis makes it a
privileged tool in many domains where it is necessary to characterize
transient phenomena. The results obtained so far have confirmed the power
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of the method in the analysis of discontinuities and in the detection of
patterns in a given signal. It has also been shown to be extremely efficient,
allowing resynthesis and transformations with a small number of voices.

The use of wavelets in the synthesis and modification of signals still needs
to be explored in a much more systematic way. It is reasonable to expect
that the remarkable mathematical properties of the wavelet transform will
turn out to be keys to many classes of applications, particularly because a
fast algorithm allows us to envisage real-time approaches.

Although the nonparametric aspect of wavelet transform is seductive by
its generality, it is nevertheless clear that certain parametric approaches
can give rise to results that are interesting and more specific. This is proved
by cross-synthesis of signals, where linear prediction gives rise to simplified
implementations.

One can conclude with the truism that in matters of analysis-synthesis
there is no universal panacea and that each case has its own optimal
approach. However, the results presented here on wavelet transforms give
a general framework for the handling of time-varying signals that corre-
sponds to a need of musicians: a “direct” chain in which the processing of
real sounds could be standardized, just as musical performance is captured
by MIDI.
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