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L Introduction

The purpose of this paper is to present a real-time algorithm for the analysis of time-varying
signals with the help of the wavelet transform.We shall briefly describe this transformation in the
following. For more details, we refer to the literature [1].

The main goal of the wavelet transform is to decompose an arbitrary signal into elementary
contributions which are labeled by a scale parameter a. Consider a fairly arbitrary function g(1),
which is localized both in the time and the frequency domain, and look at all its translated and dilated
versions g( (t-b)/a ). Then the wavelet transform S(b,a) of a signal s(t) with respect to the wavelet
g(t) is given by:

(1.1) S(b,a) = -\Il:; g ([—;a—b) s(t) dt (the bar denotes the complex conjugate).

Expressing equation (1.1) in terms of Fourier transform we obtain the following:

(1.2) S(b.a)=ﬁf§(am)c"""s(w) G

where the Fourier transform of a function f(t) is defined by : f(w) = (2n)-172 I f(t) e-i%x dt. So for the
simplicity of notation we shall distinguish a function f(t) from its Fourier transform f(®) only by its
argument. Formulae (1.1) and (1.2) allow us to interpret the wavelet transform as a tite-frequency
analysis of s(t) with filters g (aw) of constant relative frequency resolution (Awyw=C'®).
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For mathematical reasons [1], the wavelet g(t) should satisfy the admissibility condition, which

reads in Fourier space:

(1.3) cg=2n flg(m)lz % < oo,

This condition essentially means that g(t) is of zero mean Jg(t) dt = 0. In this case, the

wavelet transform is invertible:

(1.4) s)= CIEI fS(b.a)_\/%g(‘ ;b) da db
a

Here, we have supposed that the signal s(t) was of finite energy, I Is(t)I2 dt < oo, There exist
many other reconstruction formulae. Some of them use only the values of S on a suitable grid (3].

The main properties of the transformation are :
- the correspondence s --> S is linear,

- the transformation preserves energy :
J Is(12 dt = 1/cg H IS(b,a)i2 db da /a2

In practice however, one works with sampled signals obtained from s(t) by measurements at the
instants t; = i.Tg (i € Z), where 1/T is the sampling frequency. Therefore, formula (1.1) should be

replaced by its discrete version:

- -1 T
(1.6) S(iTga) = Tga 172 E s(n.Ts)g((" ;:) s)

n

Now, suppose that the wavelet g(t) has finite support. In this case, the number of sampling points
of g(t) at the scale a growths linearly with a. So the calculation of S with an algorithm based on the
formula (1.6) cannot in general be satisfying on today's machines, especially in audio acoustic where
the dilation parameter a ranges typically from 1 to 219, which corresponds to frequency analysis of
the signal s(t) over 10 octaves. So, the need for a more elaborated algorithm is imperious.
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2 A Li Iporit}
2.1 Notations and definitions

As a general notation we use the arguments of the functions to distinguish the different spaces. We
define the following operators:

Letrhe L2
Dilations: (D2 = a2r(x/a)  (x€ R, a>0)
Convolution: (Kpr)(x) = j h(x-y) r(y) dy

Inversion; (L r)(x) = r(-x)

Then the wavelet transform of a signal s € L2 with respect to the wavelet g(t) is expressed as a set
of convolutions, each of them laubeled by the scale parameter a:

(2.1.1) S(..a) = Kg,s . withg, =D, 1g.

In the following, we shall work with sequences s € 12, that is the space of sequences of complex

numbers s(n) (ne Z) of finite energy:
Energy: sl = XLols(n)?2 < oo
It is sometimes more convenient to use the z-transform of s which we denote s(z):
z-ransform:  s(z) = Zq 8(n). 2
The following operators acting on sequences will be used constantly:

letfse 12, andpe N

lations:
(Ts)(n) = s(n-1)

(Ts)(z) = z°). s(z)
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p 2 s(n/p) forn=0mod p
(Dps)(n) =
0 elsewhere

(Dps)(z) = p~12 s(zP)

Convolutions;
(Ks)() = Doy f(n-m) s(m)

(Kgs)(z) = s(z) f(z).

We shall denote by 1 the sequence which is zero everywhere except in 0 where it 1. So the

identity can be written as:

Identity:
Kis=s

The length of a sequence s (the number of non zero elements) will be denoted by Isl:
Length: Isl = Dogmye0 1.

The most time consuming operations that we shall encounter are actually convolutions. In order to
compare different algorithms we introduce the notion of complexity. For a convolution K¢s it is quite
reasonable to measure the complexity by the length Ifl of the filter f we convolute with:

Complexity: K¢l =1fl

The reason for this is that this is exactly the number of operations - multiplication of two numbers

and addition of the result to an accumulator - to realize this convolution. The complexity of the

product of two convolutions is given by the sum of the respective complexities:

(2.1.2) I K¢ Kp | = +hi

The passage from an everywhere defined function r(x) to a sequence is done by the perfect
sampling operator P. For the sake of simplicity, let us suppose that the sampling time is unity, Tg=1.

Sampling: (Pr)(n) = r(n) (ne Z)
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In view of formula (1.6), we define the discrete wavelet transform of a sampled signal se 12 with
respect to the wavelet g(t) as a set of convolutions with filters g, labeled by the scale parameter a:

(2.1.3) Sa=Kg,s:  with gy = PD,l g.

We now want to calculate the discrete wavelet transform for N octaves ; that is the scale parameter
a takes the values a=1,2,4,....,2N_ Typically N is of the order of magnitude of 10 e.g as in audio-
acoustic applications.

Obviously, there is a direct method of computing S, just by using the definition (2.1.3), and
evaluating the convolutions. So suppose now that g = ga=1has finite length, Igl < e°. In practical
applications this will always be the case. Then the complexity of this algorithm to calculate the n-th
octave, S,22n, can be estimated as follows:

(2.1.1) complexity =1 Kg__n|=1ga=pnl ~ Igl. 20

We see that the amount of calculation grows exponentially with the number of octaves, which is a
serious problem when n~10.

2.3 A class of wavelets,

The algorithm we shall establish now will reduce the complexity of the convolution with the
dilated wavelet, by factorizing it into convolutions with smaller filters (compare with formula 2.1.2).
This will be possible under certain hypotheses on the wavelet .

In a first step, we shall construct an operator acting on sequences which shall be the analog of the
dilation operator D, acting on functions. To be more precise, we are looking for an operator O: 12512

satisfying

(2.3.1) OnPg=PDy"g, (ne N)

for a sufficiently large class of functions g. In particular this class should contain some interesting
wavelets. Equation (2.3.1) means that sampling the dilated versions of g can be replaced by the
action of O on the original sampled sequence. Additionally we should require that O is numerically
simple. The a priori choice O = D, is not satisfying since there are too few functions satisfying
(2.3.1): the only continuous function satisfying (2.3.1) is g = 0 . This is due to the fact that (D2g)(n)
= () whenever n is odd, independently of its neighbouring values. A better choice might be to obtain
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the values at the odd position by means of an interpolation procedure. Let us suppose that there is a
filter F € 12 doing this job for us. We then define

(2.3.2) O =D+ TD2Kp
To illustrate the action of O, let us give two examples.

Plactadies alliee St

Let F be given by :  F(-1) = F(0) = 1/2, all other elements are zero, then O is doing a dilation by
means of linear interpolation:

2-12 g(n/2) for n even

(Og)n) =
27172(172) [ g( (n-1)/2) + g( (n+1)/2)) for n odd

The class of continuous functions for which (2.3.1) holds are exactly the functions which are

affine on each interval [n,n+1] .
1) Plocew -
Let F be defined by : F(0) = 1, all other elements are zero, then the action of O is :

(O g)(n) = (O g)(n+1) = g(n/2) for neven

There is actually no continuous function satisfying 2.3.1 apart from the trivial one, g=0.
However, the piecewise continuous function satisfying (2.3.1) are the functions that are constant on
any interval [n,n+1[ .

From these two examples, one might be tempted to guess that filters corresponding to higher order
Lagrangian interpolation (quadratic, cubic, ...) might give rise to the corresponding spline functions.
But this is not true. However for higher order interpolations, the functions satisfying 2.3.1 become

more and more regular.[2]

However, in view of numerical applications, condition (2.3.1) is much too strong. Instead it
should be sufficient to require that the difference , e.g. in norm, of the right and the left hand side are
smaller than some given precision € for all N octaves in consideration:

(2.3.3) NonPg-P(MDyngli<ce; 0sn<N

This condition can easily be checked numerically for a given function g.
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We now want to show, that convolutions KO“g- with dilated versions of a filter g, can be

factorized into convolutions with smaller filters:

Lemma: let ge 12, and let F € 12 be a filter defining the pseudo-dilation operator O. Then the
convolution operator KO"g factorizes into simpler convolutions: (o = 1/¥2)

(2.3.4) Kong = a"Kg Kp .. Kg

with Fi=1+T(a1Dy)F, Fis1 = (@1 D)) F; gn= (@1 Dyng

So with the help of this lemma we can realize the calculation of the n-th octave of the wavelet
transform, which is a convolution with a filter of length IOngl = 20 Igl, with the help of smaller
convolutions, which correspond to an algorithm of complexity

(2.3.5) |Kg, Kg, .. Kg I=lgl+n(1+IF),

So, for wavelets satisfying (2.3.3), we have reduced the exponential growth in n of (2.1.1) to a
linear one. More than that, as we shall see, the calculations for N consecutive octaves can be
organized in a hierarchic way, yielding an additional gain of calculation time.

Proof of the lemma:
Let us write O in the z - representation:

(0g)(2) =212 g(z2) [ 1 + z1F(z2) ).
lterating this identity yields:z2

(0" g)(z) =212 (001 g )(z2) [ 1+ 2 'F(z2) ]
-1
=212g ) [1+2F@D) | (1422064 ). (1+22 F(22)).

So using the z representation of the dilation D) and the convolution, we have proven the lemma.

3. The imol ton of the alearis

We now shall give two possible implementations using the algorithm presented above to calculate
the wavelet transform for N octaves of the signal s with respect to the wavelet g. The hierarchic
structure is clarified if one rewrites the necessary operations in the following way: (&= 1/N2)
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3.1)

Sa=1 = Kgs; (0 octave)
Fi=1+T(ax!DpF X; = (:cKFl s;
g1=a"1Dyg Sa=2 = Ky, Xy, (1 octave)
F2=0.‘102F1 Xz = aKszl;
g2=a1Dyg Sa=22 = Kg, X2, (2 octaves)
FN=(!‘1 D2FN-1 XN = (IKFN XN-1:
en=a 1Dy gny Sa=aN = Ky XN; (N octaves)

In the following we shall present two possible implementations of this algorithm. First we define
some symbols that we shall encounter throughout this section.

3.2)

g p—————+» 0.octave

1

_.-__> 1. octave

O

N octave
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The convolutions with filters F; , which are all the dilated versions of one fixed filter can be
realized by an "algorithme 2 trous”. We suppose that the non-zero elements of h are h(n), h(n+1) ...
h(m).

A delay shall be denoted by:

— 1/

The convolution with a filter h shall be denoted by:

—% h }—>

The multiplication by a (complex) number o shall be symbolized by:

—+(a)—

The addition of two numbers shall be symbolized by:

Then a first implementation of the algorithm is merely a direct translation of formula (3.1). It is

given by the following diagram:

(3.3)

"

— d'Dzh -

v




Another possible implementation makes use of a multiplexer:

>

>

It separates a sequence s(n) into an even (s(2m)) and an odd (s(2m+1)) sequence. The following
multiplexer identity is obvious:

S

Then the convolution with a dilated filter & -1D3 h is realized as: (a=1~2)

—»la'Dyh o -

The convolution with F; = 1 + T a-!D; F is obtained by the following butterfly diagram:

(3.4)

(3.5)

Here we have used the following symbol:




If we now replace all these identities in diagram (3.2) and do some graph algebra, then we see that
the calculation of the wavelet transform on N octaves can be realized as follows: (N=3)

’@ # 0 octave

# 1. octave

e.C

# 2. octave

3.octave

v

Here we have used the following abbreviation for the elementary cell:

€.C. =

vy

Up to now we only showed how to realize a real time algorithm to compute the wavelet transform
on N octaves, which corresponds to a geometric progression in the scale variable a. It sometimes
may be necessary to calculate the wavelet transform for dilation parameters which progress
arithmetically: a=1,2, ... N.

In a first step we replace the dilation by 2 encountered in section 2 by any dilation by an integer
number p. In complete analogy with (2.3.2) we define a dilation on sequences with the help of p-1
interpolation filters F) ... Fp.1:

(4.1) Op=Dp + TDpKg, + T2DpKp, +..+ TV DpKg .



The following lemma is a generalization of the lemma of section 2. It shows how to decompose
the convolution with a dilated filter hy .q = Op Oq h, by smaller convolutions:

Lemma: Let P;, Q; be the interpolation filters for Op, Oq respectively. Then the convolution with
the dilated filter Op Og g factorizes as follows:

Koy =Kg Ko Ky
with P = 1+ T (NpDp) Py + ...+ TP-1 (NpDp) Py.1
Q = (VpDp) (1 + T (VqDg) Q; +... + T¥! (VgDg) Qq-1)

9= (p.92Dpq8.

The proof of this lemma is as straight forward as for the lemma in the previous section.

Let us now suppose that for any prime number p we have chosen the interpolation filters. Then we
can simulate the dilation by any integer N of the sampled wavelet g in the following way: we first
factorize N into prime numbers, N =pj ... ppy , and then we define the dilated version gy of g as:

(4.2) gN = OPl OPm g.
Then the calculation of the voice corresponding to the convolution with gy can be factorized into
smaller convolutions if N itself is not prime. The complexity of this algorithm depends on some

number theoretic properties of N.

There is an order problem in equation (4.2), since the coqthuous dilations commute whereas its
discrete analogs do not in general. But for convenient wavelets g we may expect that the energies of
the commutators applied to g are small. In particular for pseudo-dilation operators corresponding to
linear interpolations, the commutators of these operators vanish on the affine wavelets.
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