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One important Jield in the framework of computer music con- 
cerns the modelization of sounds. In order to design digital models 
mirroring as closely as possible a real sound and permitting 
in addition intimate transformations by altering the synthesis 
parameters, we look for a signal model based on additive synthesis 
whose parameters are estimated by the analysis of real sounds. 
This model is relevant from both the physical and perceptual points 
of view, especially when the sound to be analyzed comes from 
a musical instrument. We will present some techniques, mostly 
unpublished, based on time-jirequency representations which make 
possible the estimation of relevant parameters such as ftequency 
and amplitude modulation laws corresponding to each spectral 
component of the sound. The techniques described will extend the 
results presented in [3]. These methods will then be transposed to 
broadband signals, allowing the characterization of transients. 

I. INTRODUCTION 
It has long been thought that audiophonic signals, and 

in particular the sounds produced by musical instruments, 
were wholly characterized by their spectral energy density 
or, in other words, by the knowledge of the energy ratio 
between each of its components. 

The appearance of analogical sound treatment systems 
has rapidly shown that this information, although pertinent, 
was not in itself capable of characterizing a natural sound. 
To demonstrate this, one simply has to listen to a sound 
backward (i.e., by reversing the magnetic tape). The sound 
created in this way has the same energy spectrum as 
the original sound, only its phase spectrum has changed. 
However, the sound result is very different. In the same 
way, one can easily show that modifications on the “shape” 
of the Fourier transform of the components can drastically 
change the corresponding sound, 

If both the phase and the amplitude of the Fourier 
spectrum play an important role, we could ask what 
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essential psychoacoustic information do they contain? The 
manipulation of natural sounds in the context of music 
known as “musique concrkte” has brought a fair number of 
answers to this question [18]. Thus Schaeffer [19] gave a 
group of examples aiming to prove that the dynamic aspect 
of sound plays a role as important, if not more so, as the 
simple spreading of energy over the spectrum. In this way, 
the simple fact of modifying the global energy envelope of 
a sound allows one to give a drawn-out sound the “color” 
of a percussive sound. From a mathematical point of view, 
this dynamic imformation is contained in both the phase 
and the modulus of the Fourier representation, but is too 
hidden to be easily recovered. 

It is only since the 1960’s, with the appearance of 
digital synthesis, that we have been able to get a better 
comprehension of the perceptive criteria. Risset has shown, 
in a study of the trumpet sound [17], the importance 
of the temporal evolution linked to each component of 
the spectrum. The analysis techniques that he used were 
based on the Fourier analysis with synchronic windows 
(over a number of samples of a signal corresponding to 
the fundamental period). This analysis resolutely time- 
frequency has thus permitted the characterization of the 
laws of temporal evolution of each component and later 
the building of efficient synthesis algorithms. 

From this point, most techniques for analysis and syn- 
thesis of audiophonic signals have concentrated on both 
temporal and frequential data. Many applications have 
been developed using either parametric methods taking 
into account an a priori knowledge of the signal (linear 
prediction in synthesis and analysis of speech signals) or 
nonparametric (phase vocoder). 

In 1946, Gabor proposed an analysis-synthesis technique 
by “information grains” made up of elementary signals 
localized both in the time and the frequency domains. This 
type of decomposition, although aiming to optimize the 
transport of the information, gave rise to many audiophonic 

0018-9219/96$05.00 0 1996 IEEE 

PROCEEDINGS OF THE IEEE, VOL. 84, NO. 4, APRIL 1996 561 

Authorized licensed use limited to: Richard Kronland-Martinet. Downloaded on November 17, 2009 at 13:01 from IEEE Xplore.  Restrictions apply. 



applications impossible to achieve using classical signal 
treatment methods. The wavelet transform can be consid- 
ered as a “cousin” of the Gabor transform, since it also 
generally decomposes an arbitrary signal into elementary 
contributions localized in time and in frequency. The essen- 
tial difference resides in the construction of the elementary 
functions and moreover in the fact that it is possible to 
select the reference function. 

When we began to work in the wavelet field, we first 
addressed the problem of characterization of sounds through 
the behavior of the representations [13]. This problem is 
simpler if one requires the picture obtained to be invariant 
under time shifts and also the ability to choose the time 
andor the frequency accuracy of the analysis. Moreover, 
in order to obtain physical information such as the energy 
distribution, we have shown that the choice of a progressive 
wavelet is suitable. These requirements led us to use con- 
tinuous representations instead of “orthonormal” wavelet 
basis. We then investigated the potential of modifying 
the original sound by altering the pictures between the 
analysis and synthesis processes [14], [91]. Once again, 
psychoacoustic considerations led us to act on the phase 
and the modulus of the transforms. In that way, we gave 
the musicians a set of tools aiming to “sculpt” the sound 
and provide exotic effects such as harmonization, scattering, 
time stretching or transposition. More than mathematical, 
these nonlinear transformations were based on our expertise 
and some failures remainded unexplained. In order to 
proceed more precisely, we finally addressed the problem 
of the modelization of the sound by a combination of 
elementary components corresponding to physical aspects 
of the sound source, i.e., eigenfrequencies of the structure, 
or perturbations due to the playing (vibrato) [lo]. The 
model we are interested in can be written as 

and the problem of simulating and transforming a sound 
consists in estimating the amplitude (Ak(t))  and the fre- 
quency (wk ( t ) )  modulations laws. 

The aim of this paper is to present recent works in the 
field of the modelization of sounds using time-frequency 
related methods such as Gabor and wavelet representations. 
Even though the “pictures” obtained by these techniques 
are of great interest, the constraints due to the reproducing 
kernel do not allow one to estimate properly the parameters 
corresponding to a synthesis model and more sophisticated 
techniques have been derived. We will describe how some 
considerations on the signal allow one to construct good 
estimates of the modulation laws for different kmd of 
signals (quasi-periodic or transient). For that purpose, we 
will mainly use the property of linearity of the transforms 
and most of the techniques have been based on the Gabor 
transform which is more appropriated to a time-frequency 
description of the sound. Nevertheless, the techniques de- 
scribed can often be supported by both wavelet and Gabor 
transforms. 

We shall first recall our notations and conventions and 
then focus on the study of the behavior of the representa- 
tions of the so-called “asymptotic” signals, which represent 
one single component of our synthesis model. After recall- 
ing the approximations obtained through stationary phase 
arguments, we shall introduce a new approximation which 
gives rise to a more intuitive description of the transforms, 
as well as new algorithms which enable a more accurate 
estimation of the modulation laws. We will then transpose 
these asymptotic approximations in the Fourier domain in 
order to describe the behavior of the representations of 
transients. Similar to the time-asymptotic case, we shall 
derive algorithms allowing the estimation of the group 
delay and the spectral density. These two approaches, 
corresponding to locally linear frequency or group delay 
modulation laws (and consequently well adapted to the 
Gabor transform), will then be extended to hyperbolli- 
cally frequency modulated signals through the study of 
the wavelet transform of homogenous signals. We shall 
finally point out the advantage of the linearity of the 
representations, by building evolutive filters through linear 
combinations of restrictions of the transforms. These filters, 
aimed at the separation of components, will enable an 
accurate estimation of the modulation laws needed for the 
synthesis model. 

a. DEFINITIONS AND NOTATIONS 

A. Fourier Transfomz 

will be given by 
The Fourier transform of a function f ( t )  denoted f ( w )  

B. Gabor Transform 

denoted by [5] 
The continuous Gabor transform of a signal s ( t )  will be 

1 
27r 

= - J’ R(w)%(w - a)ezwr dw. 

The parameter T denotes the time translation. The pa- 
rameter a denotes the frequency translation; it has the 
dimensions of frequency. 

W(t )  is the localization window (the bar denotes the 
complex conjugate); it is a square integrable function 
localized and smooth, in both the time and the frequency 
domains. It is convenient to assume that W ( w )  is localized 
around w = 0, with an unique maximum for this value, and 
with compact support, at least from a numerical point of 
view. For instance, a gaussian is a good candidate. 

From signal processing point of view, continuous Gabor 
transform for a fixed 01 is equivalent to linear bandpass 
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Signal, modulus, and phase of the Gabor transform of a sum of six harmonic components. Fig. 1. 

filtering, centered around frequency a. In the frequency 
domain, since the filters are all obtained through the trans- 
lation of the function k ( w )  by a,  the decomposition has 
constant bandwidth: Aw = Cst. 

When dealing with a real-valued signal, one can restrict 
the variations of a to R+, since the values of Lg(7, a )  
for negative values of a can be deduced from Lg(7 ,  a )  for 
positive values of a. 

It is convenient to represent the complex-valued 2-D 
functions obtained this way with the help of two pictures 
corresponding to the modulus and to the phase of the 
transform. For that purpose we use a density of black 
points proportional to the values of the modulus and of 
the principal values of the phase. 

Figs. 1 and 2 show such representations. They correspond 
to the Gabor transform of the same signal (a sum of 
six harmonic components) analyzed with two different 
windows W(t) .  In Fig. 1, the window is well localized 
with respect to the time, leading to a bad separation of the 
components in the frequency domain, but showing impulses 
in time due to the fact that the signal can also be considered 
as a filtered Dirac comb. In Fig. 2, the window W ( t )  is 
well-localized in frequency, allowing the resolution of each 
component. In both figures, the phase behaves similarly, 
showing the periodicity of each component. This property 
has been used to estimate precisely the frequency of the 
components [lo]. 

C. Wavelet Transform 
The wavelet transform is defined as follows [l] 

T(b, a )  = .lg( T) s ( t )  d t  
, P  

= -L i(w)$(aw)eiwb dw. 
27r 

The parameter b denotes the time translation. The pa- 
rameter a denotes the dilation or the scale, which is 
dimensionless. 

For our purpose, we shall only consider wavelets g ( t )  
of the form: g ( t )  = W(t)exp(iw,t). We shall assume 
that W ( t )  is real and symmetric (its Fourier transform is 
real), and that its Fourier transform vanishes at w = w, 
(admissible wavelet), the other requirements remaining the 
same as for the Gabor transform. 

The restriction of the continuous wavelet transform for a 
fixed scale a is equivalent to bandpass linear filtering op- 
eration centered around frequency 2. In the time domain, 
since the filters are all obtained through the dilation of the 
function W(t)e"ot by a, the decomposition has constant 
relative bandwidth: % = Cst. 

When one works with real-valued signals, one can restrict 
the variations of the parameter a to R+*, since a11 the 
information contained in the signal is available by looking 
at the positive frequencies. In this case, it is convenient to 
assume that the wavelet is progressive: 

$(w - W O )  = 0 w 5 0. 

Under this assumption, the components of negative fre- 
quency do not interfere with the positive ones, and the 
modulus and the phase of the wavelet transform can be 
linked to physical parameters [Gros]. From a practical point 
of view, if W ( t )  is a gaussian, the progressivity condition is 
effectively verified when w, is greater than six. In the Gabor 
case, this condition cannot be satisfied for any frequency 
translation a. 

Fig. 3 shows the wavelet transform of a sum of six 
harmonic components. In contrast with Figs. 1 and 2, one 
can see that the wavelet transform privileges the frequency 
accuracy at low frequency (large a )  and the time accuracy 
at high frequency (small a). 
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Fig. 2. Signal, modulus, and phase of the Gabor transform of a sum of six harmonic components. 
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Fig. 3. Signal, modulus, and phase of the wavelet transform of a sum of six harmonic components. 

D. Time and Frequency Asymptotic Signal 
1) Time-Asymptotic Signal: A signal s ( t )  = As(t)eia*(t) 

is called asymptotic with respect to the window W(t )  under 
the following assumptions [16] 

These two conditions imply that s ( t )  oscillates fast with 
respect to its amplitude variations, which are supposed to 
be locally constant on the support of W(t) .  

2)  Frequency-Asymptotic Signal: If we transpose all the 
requirements made on the signal from the time domain to 
the frequency domain, the signal s ( t )  is called a frequency- 
asymptotic signal with respect to the window W ( t )  if 
its Fourier transform >(w)  = As(w)eZ@S(W) satisfies the 
following assumptions: 

These conditions imply that the modulus of 2(w) varies 
slowly on the support of W ( w ) .  As a consequence, the 
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time support of the signal is small with respect to the time 
support of the analyzing function. 

3) Instantaneous Frequency: The instantaneous fre- 
quency of an analytic signal s ( t )  = A,(t)ei@s(t) is 
generally defined as its phase derivative [16], but it also 
corresponds to the “frequency centroid” of the signal: 

4 )  Group Delay: In the same way, the group delay of a 
signal s ( t )  is generally defined through the phase derivative 
of its Fourier transform, but also corresponds to the “time 
centroid” of the signal 

where Q S  ( w )  is the phase of the Fourier transform of s ( t )  . 
5)  Local Frequency: We shall call “local frequency” as- 

sociated to the wavelet and Gabor transforms, the derivative 
of the phase of the transforms with respect to the time 
translation parameter. 

Applying this definition to the transforms yields 

and the local frequency, in both the wavelet and the Gabor 
case, appears as the “centroid” in the frequency domain of 
the product of the signal by the analyzing function. 

6) Local Delay: In the same way, we shall define the 
“local delay” of the Gabor transform as the phase derivative 
of the transform with respect to the frequency translation 
parameter 

The local delay is related to the “centroid” in the time 
domain of the product of the signal and the analyzing func- 
tion. In the wavelet case, an equivalent definition cannot be 
obtained, since the phase derivative of the transform with 
respect to the scale is dimensionless. Nevertheless, we shall 
see below that in a specific context, a similar definition can 
be proposed. 

111. mPRESENTATIONS OF MONO-COMPONENT 
ASYMPTOTIC SIGNALS 

In this section, we shall study evolutive signals whose 
time-frequency representations displays a localization of 
the energy along a unique trajectory. We shall show that, 
depending on the assumptions made on the signal, this 
trajectory is related either to the instantaneous frequency 
(time-asymptotic signals) or to the group delay (frequency- 
asymptotic signals). Several algorithms, allowing a contin- 
uous estimation of this trajectory will be proposed. 

A. Time-Asymptotic Signals 
Let us first consider a time-asymptotic signal as defined 

previously. This assumption makes sense in the framework 
of musical sounds, since it corresponds to a signal, the fre- 
quency of which is locally (with respect to the time support 
of the analyzing window) linear, and the amplitude of which 
is locally constant. These assumptions are not too restrictive 
from a perceptive point of view, if one remembers that 
the duration of the window generally corresponds to a few 
milliseconds of sound. In this case, it has been shown 
[3], [4] that the stationary phase method leads to a correct 
approximation of the transforms of such a signal as well as 
continuous algorithms for the estimation of the modulation 
laws. The interested reader will find more details on this 
approach in the Appendix. 

Even though this approach gave new tools to estimate 
parameters of a synthesis model, some problems still re- 
mained: 

1) These approximations fail in the case of a monochro- 
matic signal. 

2) Contrary to what we would expect, the behavior of 
the transforms does not generalize the monochromatic 
case. Indeed, it is not possible to relate the restriction 
of the transforms for a fixed time to the Fourier 
transform of the analyzing function. 

3) In the Gabor case, two different criteria should give 
rise to the same ridge, but in practice, the curves 
extracted are generally different. 

In order to give answers to these problems, in the Gabor 
case, we shall propose a different approach allowing a 
more accurate approximation of the transform as well as 
a more intuitive description of its behavior by relaxing the 
hypothesis made on the amplitude modulation. 

1) Local Chirp-Based Approximation: Roughly speaking, 
the stationary phase approximation consists of expanding 
the phase of the signal around a point in time that cancels 
the term involving the first derivative of the phase of 
the expression to be integrated. In a certain sense, this 
approximation “forgets” that the modulus of the analysis 
function localizes a portion of signal that also contributes 
to the integral. Here, we shall consider an approximation 
which takes into account this contribution. The hypothesis 
on the signal still remains the same, but in order to be 
more general, w: rather use a window W ( t )  defined by 
~ ( t )  = exp(+) exp(ip(5)). 
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Fig. 4. Time-asymptotic hypothesis made on the signal and the 
window. 

As one will see soon, this “chirped” window will be 
very useful. For the calculation, one has first to assume 
that around t = r, the phase of the signal can be well 
approximated by its second-order limited expansion around 
t = r  

@,(t) N @,(T) f (t - T)@L(T)  f i(t - T)’@:(T). 

In the same way, we consider an expansion of the amplitude 
modulation law around t = r 

k=00 

A,(t) = -ALk)(r). k !  
k=O 

Notice that, contrary to the stationary phase approximation, 
we do not assume that the amplitude modulation law is 
locally constant. This will make the calculus more relevant 
for musical sounds, especially when they rapidly vary 
(percussive sounds). 

These assumptions on the signal and the window are 
illustrated in Fig. 4, where both the amplitude and the 
frequency modulation laws of the signal are represented. 

Under these hypotheses, the Gabor transform is a simple 
gaussian integral and is expressed by using [6] as 

277 
1 - ia’(@;(r) - p) Lg(r ,  a )  = exp(i@,(T))a 

0’ (@a1,(r) - a y  ) (- 3- 1 - ia2(@;(r) - p) . 
. 

Since the signal is asymptotic, we can assume that the 
term of order k = 0 in the above sene is predominant. 
Consequently, the transform is mainly governed by the term 

I A,(T)~(@;(T) - a )  1 - ~ ~ 2 ( m ~ / + - P )  . 

The behavior of the transform can then be interpreted 
as a superposition of Fourier transforms of W ( t )  located 
along the curve @.I(.) = a,  called ridge, that describes the 
frequency modulation law of the signal in the {T ,  a }  plane 
(see Fig. 5). 

In order to extract the frequency modulation law of the 
signal, we have to estimate the curve a.’,(.) = a with the 
help of the coefficients of the transform. 

Fig. 5. Behavior of the Gabor transform of a time-asymptotic 
signal as a superposition of W .  

Since the expression of the transform is not easy to 
handle, we shall restrict the discussion to four particular 
cases leading to explicit results. The first one is the case 
of a constant frequency, the second one is the case of a 
constant amplitude, the third one is the case of a linear 
amplitude approximation, and the fourth one is the case 
of any polynomial amplitude, with an adapted window 
satisfying ,8 = @:(T), 

a) Constantfrequency and spectral line: Let us first 
discuss the spectral line case which corresponds to a signal 
with constant frequency (@;(T)  = 0). By assuming that 
/3 = O,@(w) is symmetric about zero, and by denoting 
w, = @;(T), the Gabor transform becomes 

Lg(r ,  a )  = exp(zw,r) A s ( r ) @ ( w s  - a )  [ 
1 00 

( - i ) k  + ----W(k)(w, - a)ALk)(r) . k !  
k=l 

This  expression needs some comments, especially when the 
analyzing frequency is a, = w,. 

Lg(7,  a,) = exp(iw,r)  

At this frequency, the previous expression reads 

= K . s ( r )  + e x p ( i w , ~ )  remainder. 

Under the assumptions made on W ,  one can say that at 
the frequency a, = w,: 

The first derivative of @ ( U )  at w = 0 is zero, and 
conseq:ently, the remainder is of order two. 
Since W(w) is symmetric about zero, all its odd order 
derivatives at w = 0 are zero. The remainder is purely 
real and as a consequence, the local frequency of the 
Gabor transform directly provides w,, consequently, 
@:(r) = a is verified at a = ws .  
From the two previous statements, the modulus of the 
Gabor transform gives the amplitude modulation law 
of the signal, up to a second order error term. The 
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more @ ( U )  and A(t) are smooth, the more this error 
is small. 

b) Linear frequency and constant amplitude: This ap- 
proximation corresponds to the one presented in the 
appendix devoted to the stationary phase approximation. In 
this case, the transform is given by 

I 

2 ( @ L ( T )  - a y  ) 
exp (-T 1 - io”@.”(.) - p)  

It is easy to check that the set of points @L(r) = a 
satisfies both 

This result is obviously the same as the one obtained 
by the use of the stationary phase approximation. Though 
these two criterias are equivalent, we shall only consider 
the first one as significant, since it involves quantities the 
dimensions of which are frequency, which is the quantity 
to estimate. 

c)  Linear frequency and amplitude modulation laws: If 
both the amplitude and the frequency modulation laws are 
linear, the transform is given by 

2T 
1 - i.”@$’(T) - p) J Lg(r ,  a )  = exp(i@G(r))a 

After some calculation, we find that the set of points 
@1,(r) = a satisfies 

The ridge is here defined by a more complicated equation, 
taking into account the derivative of the phase of the 
transform with respect to both the time and the frequency. 
We shall see below that this equation can be generalized 
to signals the amplitude of which is arbitrary, up to the 
condition of a matching window. 

d) Polynomial amplitude and matched window: A more 
general case is obtained if one uses a polynomial de- 
velopment of the amplitude modulation law. Moreover, 
if the second derivative of the phase of the analyzing 
function fits the second derivative of the phase of the signal 
(@:(T) = p), the transform is given by 

O3 ( 2 ) k  Lg(7, a )  = exp(i@,(T))a& -Aik)(r) 
k! 

k=O 

One can then show that: The set of points a.$(.) = a 
and @y(r) = /? satisfies 

(g + @:(r)- @(r, a )  =a:(.) = p. 
d a  ) 2  

This new result (the “crossed criteria”) shows that either 
the “horizontal” derivative or the “vertical” derivative of 
the phase introduce a bias in the extraction of the frequency 
modulation law of the signal if its amplitude is not constant. 
To avoid this bias, one must use a particular combination 
of these two derivatives, with a matched window. 

This combination actually acts as the derivation of the 
phase of the transform in the direction of the slope of the 
frequency modulation law of the signal, given by @: (7). 

2)  Algorithmic Aspects: In order to use these criteria 
in practice, we shall now address the problem of the 
algorithmic estimation of the modulation laws from the 
Gabor transforms coefficients. The aim is to compute 
the transform only along the ridge rather than the whole 
transform. Then how can we achieve this since the ridge 
is unknown? 

We shall first present an algorithm aiming to solve 
the equation of the ridge under the approximation of a 
constant amplitude linear chirp. Then we shall consider the 
linear chirp with polynomial amplitude approximation (the 
“crossed criterion”). 

1) Constant amplitude linear chirp approximation. 
The problem to consider is: For a given parameter r,, 

find a such that = a.  
Several algorithmic methods can be found to solve this 

equation but, since it is a fixed-point equation under the 
form F(a)  = a, with F ( a )  = -&?- it seems natural to 
use the classical fixed-point algorithm, which reads: 

d@(T C Y )  

Let ao(rO) an “arbitrary” initial value. 
W.To ,at (.To)) 

“i+l(TO) = aT 
The convergence iriteria is IQ,+~ - a,\ < e ,  E fixed arbi- 
trary small. 
One proceeds to time r, + d r  by the relation: ao(ro + 
dT) = am(rO). 

In order to insure the convergence of this algorithm to 
aO3(~, )  satisfying: aO3(ro) = F(a,(ro)), one has to check 
that the function F ( a )  is a contraction on a frequency 
subset ]a- ,  a+[ containing both the initial value a, and the 
final value am. In other words: For any two consecutive 
iterations, i and i + 1: JF(a,+l) - F(a,)l < la,+l - a,l. 

Thanks to the regularity of the Gabor transform, the 
function F is differenciable, and the previous condition 
becomes 1 I < 1. 

Under the constant amplitude approximation, the deriva- 
tive of F ( a )  with respect to a is given by 
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Fig. 6. Signal, modulus, and ridge of the Gabor transform of a gaussian linear chup. 

For the “classical” Gabor analysis (p  = 0), as well as 
for the “matched window” case (p  = @:(T)), the absolute 
value of this expression is always smaller than one. Since 

is independant of 01, F is a contraction on R+. 
Such an algorithm can be easily transposed to the wavelet 

2) Linear chirp with polynomial amplitude approxima- 

The problem reads: For a given parameter To, find a! and 

case. 

tion. 

P such that 

Then the natural algorithm is once more a fixed point 
one, but with the two variables a! and p. 

W T o ,  0 2 )  + pz d @ ( T o ,  a,) 
ar da! %+1 = 

- VE fixed arbitrary small, the convergence criteria are 
the following: 

1 Q Z S - l  - Q Z J  < E  

IPz+l - P Z I  < E .  

- One proceeds to time T + d r  by the relations 

a , ( ~  + dT) = a , ( ~ )  I- Pm(7) d r  
Po(, + d r )  =P,(T). 

This expression of Pz+l is numerically easy to compute, 
values since it can be viewed as the difference of two 

computed at two different frequencies (the difference of 
which is 0%) and two consecutive samples. The two aZ+1 

values are obtained by the derivation of the phase of the 
transform between two consecutive samples and different 
frequencies (the difference of which is also Pz). Using the 
same arguments as in (l), by assuming ,LI = @ : ( T ~ ) ,  one 
can proove the convergence of the algorithm giving a. The 
convergence of the algorithm which gives p has been only 
checked numerically. 

3)  Example: The following example demonstrates the 
use of the crossed criterion with a matched window for 
the extraction of the amplitude and frequency modulation 
laws associated to a chirped gaussian wave packet. In order 
to show the improvement obtained, it is compared to the 
stationary phase criterion. 

The analysis has been performed over 600 samples; 
the sampling rate is 32 Wz. The theoretical frequency 
modulation law of the signal is linear, going from 0 Hz 
to 16 H z  over the duration of the analysis. 

Fig. 6 represents the signal, the modulus and the ridge of 
the Gabor transform computed by the criterion = 
a!. The theoretical frequency modulation law is also rep- 
resented in dotted line. One can see that in this case, the 
estimation is biased. 

Fig. 7 represents the algorithmic estimation of the ridge 
zoomed between the samples 200 and 400. Here, we 
used the criterion 9 + @p(r)w = CY, and the 
automatic matching of the window to the slope of the 
frequency modulation law. In this case, the estimation is 
exact. 

B. Frequency-Asymptotic Signals 
In the framework of time-asymptotic signals, we have 

obtained approximations of the Gabor transform of fre- 
quency modulated signal, which were concentrated in the 
frequency domain. Now we shall study the case of signals 
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Fig. 8. 
the window. 

Frequency-asymptotic hypothesis made on the signal and 

localized in the time domain, being then asymptotic in the 
frequency domain. We shall assume the modulus of the 
Fourier transform to be only locally linear, but as it has been 
done in the time-asymptotic case, we could have assumed 
it to be locally polynomial. Actually, even though this case 
does not correspond to the situations usually encountered in 
music, the importance of transients in acoustics (i.e., sonars 
and nondestructive evaluation) motivated the presentation 
of these results. 

I) Local Chirp-Based Approximation: Similar to the 
time-asymptotic case, we shall present’ an approximation 
of the Gabor transform of a frequency-asymptotic signal. 
The assumptions made on the signal let us assume that 
the modulus and the phase of the Fourier transform of the 
signal are smooth enough around the frequency w = a 
to write 

&(U) =As(a)  + (W - a)A’,(a) 
@ J U )  = @JQ) + (w - a)@’,(a) + ;(U - ay@;(a) .  
We require the analyzing function to be a gaussian: 

W ( t )  = e x p ( s ) ,  the Fourier transform of which is 
@(w) = a f i exp(+) .  These assumptions on the 
signal and the window are shown in Fig. 8. 

Under these requirements, the Gabor transform reduces 
to a simple gaussian integral, and is expressed by [6] 

Since the signal is asymptotic, we can assume that the 
transform is mainly govemed by the term 

62 
= A,(a)W(7 + @;(a))02-”m:l(a). 

The behavior of the transform can then be interpreted as 
a superposition of windows W(t )  located along the curve 
@: ( a )  = -7- which describes the group delay of the signal 
in the (7,”) plane. (See Fig. 9.) 

As it has been done in the case of a time-asymptotic 
signal, we shall present criteria involving only the transform 
which permit the estimation of the set of points verifying 
@:(a) = -T that carry the group delay information 
contained in the signal. We shall consider two different 
cases, that parallel the time-asymtpotic cases: the locally 
constant and the locally linear spectral density. 

a)  Constant spectral density: In that case, the trans- 
form is given by 

L,(~,~)=A,(cr)aexp(i(@.,(a)+a7)) 
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Fig. 9. 
asymptotic signal as a superposition of W .  

Behavior of the Gabor transfom* of a frequency- 

and it is easy to check that the set of points @’,(a) = -7 

verifies 

This result is the same as the one obtained in the case 
of a constant amplitude time-asymptotic signal. This is 
not surprising, since the approximations made describe the 
same signal. Actually, the Fourier transform of a linear 
chirp with constant amplitude is a linear chirp with a 
constant spectral density and a group delay being the 
reciprocal of the instantaneous frequency. Though these two 
criterias are equivalent, we shall only consider the first one 
as significant, since it involves quantities the dimensions of 
which are time, which is the quantity to estimate. 

b) Linear spectral density: In this case, one can show 
that the set of points @:(a) = -7 satisfies 

= a. d@(r,a)  1 d@(r,a)  
87 @;(a) da 

_ _ _ _ _ _ _ _ _ _  

As for the linear amplitude time-asymptotic signal, we 
find that the estimation of the group delay law requires a 
combination of “horizontal” and “vertical” derivatives of 
the phase of the transform. This crossed criterion seems 
different from the one obtained in the framework of time 
asymptotic signals: + @ i ( r ) ( v )  = a, but 
they can be related. Indeed, if one considers the signal 
s ( t )  = exp(z(w1t + p($) ) ) ,  the second derivative of the 
phase is p, and the second derivative of the phase of its 
Fourier transform is - ($). In this case, the two combined 
criteria become identical and lead to the same trajectory in 
the half-plane of the Gabor transform. Nevertheless, if the 
amplitude modulation law or if the spectral density are not 
constant, the curves obtained are different. This is consistent 
with the fact that under this condition, the group delay and 
the instantaneous frequency are not reciprocal functions. 

2)  Algorithmic Estimation of the Group Delay: Similar to 
the time-asymptotic case, we shall focus on the algorith- 
mic estimation of the group delay. For that purpose, we 
shall limit the discussion to the constant spectral density 
approximation. In this case, the problem reads: 

For a given frequency parameter a,, find r such that 

Contrary to the time-asymptotic case, this is not a fixed- 
point equation, but it is actually easy to obtain such an 
equation. Let us consider the Gabor transform of a delta 
function located at time to, which is the simplest function 
satisfying our assumptions, since its spectral density and 
group delay are constant 

W T P O )  = 0. acu 

Then for any frequency parameter a,, the time to is given 
by 

to=?--  

a q 7 a  ) Consequently, e gain to be replaced by r = 
awT?ao)  aa , which is a fixed-point equation of the type 

F ( T )  = 7 ,  with F ( r )  = 7 - ??kPd aa * 

*Fixed-point algorithm: 
This last equation can be solved by the process: 

Let r,(a,) be an “arbitrary” initial value. 
a@(T% (a,),ao) 

The convergence criteria is Jr,+l - r,l < E ,  e fixed arbi- 
trary small. 
One proceeds to frequency a, + da by the relation: 

7,+1(%) = rz(a0) - aa . 

7,(a, + da) = r,(ao). 

Proof of the Convergence: In order to insure that this 
algorithm converges toward roo (a,) verifying: r, (a,) = 
F ( T ~ ( ~ , ) ) ,  one has to check that the function F ( r )  is a 
contraction on a time interval I T - ,  r+ [ that contains both 
the initial value ro and the final value r,, that is, for 
any two consecutive iterations, i and i + 1: ~F(T,+I)  - 
F(7-i)) < 1r,+1 - rJ. Thanks to the regularity of the Gabor 
transform, the function F is differenciable, and the previous 
condition then reads 1 I < 1. 

Under the constint spectral density approximation, the 
derivative of F ( T )  with respect to r is given by 

d F ( 7 )  - - 
a7 0 4  + @t(a0)2. 

The absolute value of this expression is obviously always 
smaller than one. Since is independent of r, F is then 
a contraction on R. 

From a strictly mathematical point of view, though this 
algorithm provides the set of points satisfying = 0 
with any desired accuracy, one has to remember that the 
trajectory .(a) is representative of the group delay of the 
signal if it has a constant spectral density and a linear group 
delay. 

3) Example: Figs. 10 and 11 correpond to the Gabor 
analysis of a signal, the group delay of which is parabolic, 
and the spectral density of which is gaussian. This is a 
typical example in which the group delay and the in- 
stantaneous frequency are not reciprocal functions. Fig. 10 
represents the signal, the modulus, and the ridge of the 
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Fig. 10. Signal, modulus, and ridge of the Gabor transform of a signal with an hyperbolic group 
delay. 
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Fig. 11. Group delay and spectral density estimated by the use of the algorithm. 

Gabor transform. Fig. 11 shows the estimated group delay 
and spectral density obtained by the algorithm. 

C. Wavelet Transform of Complex Homogenous Signals 
As it has been pointed out in the two previous sections 

that the Gabor transform is well adapted to signals whose 
instantaneous frequency or group delay are linear. The 
purpose of this section is to describe the behavior of 
the wavelet transform of signals being eigen functions of 
the dilation operator, namely the homogenous functions 
[9]. These functions can modelize local discontinuity of 

derivatives appearing in a signal, as well as hyperbolic 
frequency modulation laws. Actually, let us consider the 
signal 

s ( t )  = o  t 5 0 
s( t )=tU t > O  

the uth derivative of which is discontinuous. 

satisfies 
This signal is homogenous of order U, since it obviously 

VA E R+*, s(At) = A U s ( t ) .  
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Fig. 12. Signal, modulus, and ridge of the wavelet transform of an homogenous signal. 

Moreover, the Fourier transform of any homogenous 
function of order U is any homogenous function of order 
-U - 1 

VX E R’*, :(Xu) = X-”- ’ : (W).  

As a consequence, the signal of the Fourier transform 

6(w)  = Kw-*-‘ 

is an homogenous function of w ,  of order -U - 1. Actually, 
it corresponds to the Fourier transform of s ( t )  as it has been 
defined, with K = iCU-‘I’(l + U ) .  

As we pointed out, these functions modefize hyperboli- 
cally frequency modulated signals. Indeed, splitting U into 
its real and imaginary parts, respectively, U ,  and U,  yields 

s(t) = t ” ? e d n ( t )  

the instantaneous frequency of which is ?. Applying the 
same calculus in the Fourier domain yields a group delay 
which is 2,  being consequently the reciprocal function of 
the instantaneous frequency. 

Let us assume that the wavelet g ( t )  is progressive and has 
at least U f 1 vanishing moment. The wavelet transform of 
an homogenous function located at t = to is then given by 

where i$-’-’) denotes the fractional derivative of order 
-U-1 ofg, definedby f(a)(x) = .& 1 (iw)af(w)e2w” dw. 

Let us describe the behavior of the wavelet transform 
of such functions [7]. Along the lines in the half-plane 
of the wavelet transform defined by e = Const, the 
transform behaves like U”. This means that the logarithm of 
the modulus of the transform as a function of the logarithm 
of the scale is a linear function of slope U,, while the phase 

as a function of the logarithm of the scale is a linear function 
of slope U,. As previously, we shall focus on the estimation 
of the instantaneous frequency by the use of the phase of the 
wavelet transform. By derivation of the wavelet transform, 
one can show that the phase satisfies the relation 

d@(b,u)  - 2 I ( t o  - b )  d @ ( b , a )  -- 
dU U U db ‘ 

As we pointed out, the frequency modulation law of 
the signal is @L(t) = 3. Then, in the half-plane of 
the wavelet transform, the trajectory which represents this 
frequency modulation (ridge) is @; ( b )  = & = 2, where 
wo represents a reference frequency. 

has the lmensions of frequency, let us 
search for the set of points satisfying: = @l,(b) = 

The relations between the partial derivatives of the phase 
show that the set of points such that = 9 corre- 
sponds to the points ( b ,  U )  of the transform where the three 
following equivalent relations hold: 

Since 

v, 
b- to  ‘ 

= O  a@@, a )  
da 

a@@, U )  - WO 

db  U 
d@(b,u)  WO d@(b,u)  - WO +-- - - 

db U ,  du U 

The first two relations parallel the results obtained in 
the framework of time or frequency asymptotic signal 
with a locally constant amplitude or a locally constant 
spectral density. It is also interesting to compare the third 
relation to the crossed criterion exhibited in the framework 
of frequency asymptotic signals. For that purpose, let us 
introduce a function Q such that 9 ( b ,  “6”) = @ ( b ,  U ) .  Then 

~- - 
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the third equation can be rewritten as 

By remembering that the signal has hyperbolic group 
delay, the second derivative of the phase of its Fourier 
transform is @:(U) = 3 and the third equation can be 
written as 

This equation corresponds exactly to the crossed criterion 
previously obtained in the Gabor case, the frequency a 
being replaced by the frequency 2. 

We shall now present an algorithm which enables the 
estimation of the group delay law, by solving the equation: 

aa 
Let us first assume that the wavelet g( t )  is of the form: 

g ( t )  = A,(t) exp(iq5,(t)). As it has been done in the case 
of a frequency-asymptotic signal, in order to exhibit a fixed 
point equation, we shall consider the wavelet transform of 
a delta function located at t = t ,  

+%a) - 0. 

Then the point to is given by the relation 

a2 d@(b,a)  t o = b +  da ‘ 

This implies 
given by 

that the natural fixed-point algorithm is 

a2 d@lb,.al 

Using the same arguments as in the Gabor case, it is easy to 
show that, at least for a delta function, and a wavelet with a 
fixed frequency, this algorithm converges. For more general 
cases, the convergence has been checked numerically with 
a fixed frequency wavelet. 

1) Example: Figs. 12 and 13 correspond to the wavelet 
transform of an homogenous signal of complex degree. 
Fig. 12 represents the signal, the modulus, and the ridge of 
the wavelet transform. Fig. 13 shows the exact estimation 
of the group delay and the spectral density obtained by the 
algorithm. 

Iv. REPRESENTATIONS OF MULTICOMPONENTS 
TIME-ASYMPTOTIC SIGNALS 

Generally, the transforms of signals with several ele- 
mentary components do not behave like a superposition 
of the transforms corresponding to each component. This 
is due to the fact that the interesting quantities, such 
as the modulus (related to an energy density) and the 
phase (related to the oscillating features of the signal) are 
nonlinear functions. The purpose of this section is to present 
an algorithm using the linearity of the Gabor transform 
and the approximations presented in the previous section, 
which enable a true separation of the components. We shall 
first consider the case of components whose frequencies 
are constant and generalize the approach to frequency- 
modulated components. 
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A. Fixed-Frequency Components: Spectral Lines 
The additive synthesis model, used in the context of 

the resynthesis of a real musical sound, requires a very 
accurate estimation of the amplitude modulation laws of 
the components. Our own experience has proved that the 
perceptual difference between a perfect resynthesis, and a 
good resynthesis relies on whether the microvariations and 
abrupt changes are taken into account or not. 

It may seem simple to estimate these quick variations, but 
in fact it is not possible to find accurately the amplitude 
modulation law associated with each component just by 
considering the horizontal restrictions of the transform, 
since a time-frequency analysis cannot be precise in both 
the time and the frequency domains. If one wishes to 
be accurate in time, one can be tempted to choose a 
short-time analyzing window. In this case the Fourier 
transform of such a window is spread out and several 
components will be merged, leading to strong oscillations 
in the modulus of the transform. Nevertheless, in order 
to avoid such a problem, it is possible to choose a long- 
time analyzing window. In this case, on the time-frequency 
representation, the components are well separated but the 
amplitude modulation law associated with each one is 
strongly smoothed (see Figs. 1-3 in Section U). In fact, 
merging of components is better than the smoothing of the 
amplitudes and the aim of the algorithm we shall present is 
the estimation of these laws, whatever the window one uses. 

I )  Algorithm: As we shall see, this algorithm requires 
knowledge of the number of components, and their fre- 
quencies. The estimation of the frequency of the spectral 
lines, by the use of averaged versions of the local frequency 
of the transforms, have been described in [lo]. 

In the case of spectral lines with constant amplitudes, the 
signal is written as 

The Gabor transform of s ( t )  is given by 

2 
k=l 

Let us consider the N restrictions of Lg(-r, a )  for ap = 
W p , l  5 P I N .  

574 

Fig. 14. Filters for a constant amplitude estimation. 

Then V p  one can write 

N .  

These formulas correspond to two linear systems of N 
equations with N unknowns whose form is 

The elements of the first matrix are given by ' W p k  = 

The elements of the second matrix are given by 2 W p k  = 

Then at any time 7, the solution vector X ( T )  is given by 
X ( T )  = 'W-' Re{Lg(r)} + i  2W-1 Im{Lg(r)}, and 
the modulus of xk(r) is A k .  

Question: beyond the calculus, what have we really done? 
Consider a given vector r of {ap ,  1 5 p 5 N }  

parameters. With this vector and a given function W(t) ,  
one has built two matricial operators: = lWV1 and 
' 0  = 2W-1, acting on the restrictions of the transform at 
any time 7 for the parameters ap.  Since these operators 
and the Gabor transform are linear, their action on the 
restrictions of the transform can be directly transposed on 
the Gabor functions themselves, and one can write 

1 ^  z ( W ( w k  - a p )  f @ ( - w k  - a p ) ) .  

? ( W ( W k  1 -  - ap)  - *(-wk - ap) ) .  

X ( T )  = 'R Re(Lg(7)) + i '$2 Im{Lg(r)} 
= +('R(L&) +E&)) + i 20(Lg(7) - Zg(7) ) )  

= + - I') + I/ii(w + r)) 
+ ' Q ( @ ( w  - r) - @(U + I ')))a(w)e'uT dw. 
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2 40e- 1 

Fig. 15. Modulus of the restriction of the Gabor transform for 
cy = 5Wfond computed with a window spread out in frequency. 
Many harmonics are merged and the amplitude shows significant 
oscillations. 

Then, finally 

\p=l 

. j (w)eiwT dw 

= / Fk(w)B(w)eiW' dw. 

The vector P ( w )  is a filter bank composed by N el- 
ements. By construction, each element A ( w )  has the 
following properties: Fk(ap)  = 6,k,Fk(-ap) = 0,1 5 
p 5 N ,  1 5 k 5 N .  This means the following: 

1) An elementary filter Fk( t )  is orthogonal to any func- 
tion cos( wPt + 4) with w, = ap and p k  . Moreover, its 
time support equals the time support of the function 

2) For any k o ,  the convolution between Fko(t)  and 
s ( t )  = Er==, Ak cos(wkt + &) is A k ,  exp ( i (wso t  + 
W ( t ) .  

4 k o ) ) .  

The Fourier transfonn of such a family of filters is 
represented in Fig. 14. The horizontal axis is the frequency. 
The input signal is a sum of six sine waves. The dotted 
vertical lines indicate the position of each frequency in the 
spectrum. The six filters are displayed vertically stacked, 
two of them being shaded gray. The Fourier transform of 
a filter equals one for its corresponding spectral line, and 
equals zero for the five other frequencies. 

The generalization of this algorithm when the amplitudes 
of the components vary with respect to the time is obvious 
if, in the Gabor transform expression, one can replace A k  
by Ak ( T ) .  Such an approximation is generally a reasonable 
one, but in some cases it is not sufficient and one has to 
use a more accurate algorithm. In order to make easier the 
reading of this paper, this algorithm is described in the 
Appendix. 
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Fig. 16. Modulus of the restriction of the Gabor transform for 
a = 5Wfond computed with a window narrow in frequency, 
the localization of which has been matched to resolve only one 
component (the time window has to be three times longer than in 
Fig. 15). In this case, the amplitude is heavily smoothed. 
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Fig. 17. Result obtained by the algorithm described in the Appen- 
dix, by considering locally constant amplitudes. The time support 
of the window used is the same as in Fig. 15, but the amplitude 
shows fewer oscillations. 

In the same way, it leads to the construction of a 
filter bank, where each filter enables the extraction of an 
amplitude modulation law being locally a polynomion of a 
given order J on the time support of W(t  - T ) .  

2) Example: In order to illustrate the method, we have 
represented in Figs. 15-18 the amplitude modulation laws 
of the 125 first milliseconds of the fifth harmonic (5wfond) 
of a sitar sound, extracted with different techniques. The 
sampling rate is 32 kHz. The horizontal axis is the time, 
and displays 4000 samples. The window W ( t )  used for the 
computation is a gaussian. 

B. Frequency-Modulated Components 
Up to now, we have presented several algorithms which 

allow the estimation of pertinent parameters when the signal 
is a single asymptotic signal or composed of a sum of 
spectral lines. In the first case, one of the conditions for 
the estimation of a ridge corresponding to the frequency 
modulation law was the asymptotism of the signal with 
respect 'to the analyzing function (generally, a sum of 
asymptotic signals is not asymptotic). In the second case, 
the algorithmic development became possible through a 
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Fig. 18. Result obtained by the algorithm described, by consid- 
ering locally linear amplitudes. The time support of the window 
used is the same as in Fig. 15, but the amplitude does not oscillate 
and is not smoothed. 

strong hypothesis on the signal: it is a sum of elementary 
contributions, and one can associate a supposenly horizontal 
ridge to each component. 

The purpose of this part is the description of a technique 
combining the algorithms previously presented, allowing 
the estimation of the frequency modulation law of each 
component when the signal is a sum of asymptotic signals. 
We will focus on two different cases: noncrossing ridges 
and crossing ridges. 

For that purpose, we shall consider a signal s ( t )  com- 
posed by N complex-valued frequency modulated compo- 
nents (the requirement of complexity is just for clarity in 
the following): 

N N 

s ( t )  = A k  exp(i@k(t)) = s k ( t ) .  
k=l k=l 

1) Noncrossing Ridges: We shall first assume that the 
intersection between the theoretical ridges is empty. The 
aim is to associate a ridge Q ~ ( T )  to each contribution. 

We shall suppose that the ridge estimation algorithm 
could be applied if the input signal was a single component 
s k ( t ) .  This means that at any time T ,  one can define an 
interval I k  associated with the transform, inside which the 
iterative scheme converges. What happens now if one has 
several components? Two situations have to be considered. 

The first one is the simplest: in the half-plane of the 
transform, one can associate a closed interval I k  to each 
elementary contribution and the intersection between two 
different intervals can be set empty, just by choosing a 
window sufficiently narrow in frequency. In this case, the 
transform completely separates each contribution, leading 
to N disjointed ridges, as long as such a longtime window 
does not merge the components in the time domain. 

The second situation to be considered is the overlapping 
of the intervals, corresponding to arbitrary close tGeoretica1 
ridges. In this case, even if it is sometimes possible to 
associate a ridge to each contribution by defining subinter- 
vals inside which the algorithm converges, thlese estimated 

$01 Pi& $. Fig4 

Fig. 19. 
two crossing linear chirps. 

Signal, modulus, and phase of the Gabor transform of 

ridges will be false, due to the interferences between the 
contributions. Let us focus on this situation. 

The basic idea is the following: 
As in the case of the spectral lines, it is possible to define, 

at any time ro, an operator a(7,) acting now on a vector of 
scalar products Lg(r,)  (instead of horizontal restrictions of 
the transform) between the signal and Gabor functions at 
the different frequencies a k ( ~ ~ ) .  The way to build such an 
operator, by considering either a locally constant frequency 
approximation or a locally linear frequency approximation, 
is detailed in the Appendix. 

As in the spectral line case, this algorithm can be in- 
terpreted as a way to build an evolutive filter bank. The 
results presented in the appendix are valid in the case of 
components with constant amplitude, but they can be easily 
generalized to the case of any locally polynomial amplitude 
modulation laws, as it has been done in the spectral line 
case. 

2) Crossing Ridges: We shall first investigate the case of 
a locally constant frequency approximation, then switch to 
the linear one. 

a) Constant ffequency approximation-Cooking method: 
Let us imagine that two theoretical ridges are crossing. 
Two problems then arise. First, without taking into account 
some continuity conditions on the amplitude or on the 
frequency of  each component, it is impossible to say after 
the crossing point which ridge is the prolongation of a ridge 
before the crossing point, that is to say, one cannot make the 
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Fig. 20. Modulus and ridge associated to the Gabor transform of a signal composed by a sine 
wave with amplitude 0.5, a sinusoidal frequency modulated component and a parabolic chirp, both 
with amplitude one. The ridge only shows bubbles. 

difference between two ridges effectively crossing and two 
ridges getting closer before the crossing point and moving 
away afterwards. The second problem is more algorithmic. 
At the crossing point, one can no longer consider that 
there are two ridges since they are identical. Consequently, 
the operator R is not defined since the corresponding 
matrix W is not invertible. Nevertheless, it is possible to 
get around the second problem by considering the phase 
behavior of the transform. For that purpose, let us decide 
that the ridges must not cross, even if theoretically they 
are crossing. It means that in the neighborhood of the 
crossing point, one ridge is “above” the other one. Let us 
remember that near the ridge, the local frequency of the 
transform is very close to its value on the ridge. Moreover, 
the operator R acting on Gabor windows builds a special 
filter bank. Each filter equals one for a given frequency 
and zero for the other ones. This filter is as smooth as the 
functions used for its construction. When the two ridges are 
drawing nearer, the matrix W starts to be ill-conditionned. 
The idea, justified by the two previous remarks is the 
following. One can perturb the linear system to keep an 
invertible matrix when the distance between the estimated 
ridges or the determinant of the matrix W becomes smaller 
than a given constant D. In this case, at any step of the 
iteration, one will add a small quantity da to the estimated 
frequency parameter corresponding to the “upper” ridge, 
while one will substract da to the estimated frequency 
parameter corresponding to the “lower” ridge. One can 
hope that such a trick will prevent the ridges to cross, 
while it keeps the matrix invertible and allow the ridges to 
become very close since the local frequency corresponding 
to the perturbed frequency is very close to the not perturbed 
one. Obviously, the problem is the appropriate choice of 
D and da. It has been solved by numerical tests. 

Fig. 19 displays the transform of a signal composed by 
two crossing linear chirps: 

Fig1 and Fig5: The two components are naturally sepa- 
rated by the analysis, and the estimation is done without 
any problem. 
Fig2 and Fig4: The components are getting nearer. Beats 
appear on the modulus. Nevertheless, the phase clearly 
shows two different periodicities. In this case, the algo- 
rithm enables the estimation of the components without 
any modifications. 
Fig3: Around the crossing point, the signal is locally 
monochromatic. The phase has the same periodicity at 
any analyzing frequency. Any linear filtering can then 
give the correct frequency. One can then freeze the 
central frequencies of the functions involved in the filter 
bank, in order to keep the inversibility of the matrix W .  

b) Linear frequency approximation: In this case, the 
problem is different. One assumes continuity conditions 
by taking into account the local slope of each frequency 
modulation law in the definition of the matrix W .  Then, 
this matrix is mathematically invertible near and even at 
the crossing point as far as the two slopes are different. 
This implies that the two frequency modulation laws must 
not be tangent. This is the mathematical point of view, 
but actually, from the numerical one, since the corrections 
introduced are in fact very small, the effective crossing 
of two components can be obtained only by the use 
of a window W(t ) ,  the time support of which is large 
enough. From one hand, this condition is natural, since 
in this case, the window “sees” a large portion of only 
one component, and the corrections introduced by taking 
the slope into account become significant. From the other 
hand, the choice of such a window can lead to numerical 
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Fig. 21. 
under the constant frequency approximation. 

Frequency and amplitude modulation laws of each component obtained with the algorithm 

134e+3- 
7 ?2e+2 

9 71e- 1-7 '  

9 17e-1- 
8 62e-  1 - 
8 08e- 1 - 
7 54e- 1 - 
7 OOe- 1 - 
6 4512- 1 - 
591e-1-  
5 37e- 1 - 

problems, especially aliasing ones. When one uses a short- 
time window, the problem seems to be located in the 
iterative scheme that solves for the slopes, since one has 
checked, in the upper example of two crossing linear chirps, 
that once the slope parameters are fixed to their exact value, 
the iterative scheme converges toward the theoretical values 
of a,  and the chirps really cross. 

3) Exumples: The following pictures illustrate the tech- 
niques described above. For Figs. 20 and 23, thie graphical 

- 1 h 

conventions are: 

1) The sampling rate is 32 H z .  
2) The horizontal axis is the time, expressed in samples. 
3) The vertical axis is the frequency, expressed in hertz. 

Figs. 20 and 23 are divided into three parts: 

1) The upper part is the signal. 
2) The middle part is the modulus of the transform, 
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Fig. 23. Modulus and ridge associated to the Gabor transform of two crossing parabolic chirps, 
both with amplitude one. Near the crossing points the ndges are false. 

138814 

AmPlitUae 
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Frequency 152e*4 
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Fig. 24. Frequency and amplitude modulation laws of each com- 
ponent obtained with the algorithm under the constant frequency 
approximation. Near the two crossing points, the frequencies 
involved in the definition of the matrix W have been modified 
to keep this matrix invertible and to avoid the crossing. 

shown in a linear scale by density of black dots. It is 
maximum (minimum) when it is black (white). 

3) The lower part is the ridge corresponding to the set 
of points verifying = cy. 

Figs. 21 and 24 correspond to the extraction of the 
modulation laws by the use of the iterative algorithm, with 
a constant frequency hypothesis. It is divided into two parts: 

1) The upper part represents the frequency modulation 
law of all the components obtained through the algo- 
rithmic estimation. 

2) The lower part represents the amplitude modulation 
law of all the components obtained through the algo- 
rithmic estimation. 

Figs. 22 and 25 correspond to the extraction of the 
modulation laws by the use of the iterative algorithm, with 
a linear frequency hypothesis. It is divided into two parts: 

Amplitude 

9 86e- I 
9 42e-1 
8 99e-1 
855e-1 
8 I le-l 
7 67e-1 

Fig. 25. Frequency and amplitude modulation laws of each com- 
ponent obtained with the algorithm under the linear frequency 
approximation. Near the two crossing points, the matrix W stays 
invertible, by taking into account the different slopes of each 
component, and using an adaptive window. The two components 
cross, and the error is smaller than in Fig. 24. 

1) The upper part represents the frequency modulation 
law of all the components obtained through the algo- 
rithmic estimation. 

2) The lower part represents the amplitude modulation 
law of all the components obtained through the algo- 
rithmic estimation. 

Example 1: Signal with three components (Figs. 20-22). 
Example 2: Crossing parabolic chirps (Figs. 23-25). 
Example 3: Saxophone sound. 
This last example demonstrates the use of the evolutive 

filter bank, in order to improve the spectral line estimation 
on a saxophone sound composed of contributions modu- 
lated both in amplitude and in frequency. The sampling 
rate is 32 kHz, and the duration of the analysis is 265 ms 
(8500 samples). For the construction of the filters, we have 
assumed that the frequency was locally constant and that 
the amplitude was locally linear. 
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Fig. 26. 
spectral line estimation algorithm. 

Amplitude modulation law extracted by the use of the 
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Pig. 27. Frequency modulation law extracted by the use of the 
spectral line estimation algorithm 

Figs. 26 and 27 display, respectively, the amplitude (on 
a linear scale) and the frequency modulation laws of the 
20th harmonic extracted by the use of the spectral line 
estimation algorithm. Since the frequency of the compo- 
nents changes on the duration of the analysis, the fixed 
filters does not match the frequencies of the signal on all 
its duration and the estimation performed is biased during 
the beginning, yielding oscillations in the modulation laws 
due to interferences with the neighbor components. 

Figs. 28 and 29 display respectively the amplitude (on a 
linear scale) and the frequency modulation laws of the 20th 
harmonic extracted by the use of the evolutive spectral line 
estimation algorithm. This time, the frequencies of the filter 
follow the frequencies of the signal and the estimation is 
correct. 

V. CONCLUSION 
The modelization of audiophonic signals requires a de- 

composition of the sound into elementary components 
composed of “pure tones” modulated in both amplitude 
and frequency. Depending on the signal, we have proposed 
techniques based on time-frequency representations (Gabor 
and wavelet transforms) allowing such a decomposition. 
These techniques take into account the fact that continu- 
ous transforms are redundant and that a particular set of 
coefficients, called the ridge, contains the most relevant 

Fig. 28. Amplitude modulation law extracted by the use of the 
evolutive spectral line estimation algorithm. 

447e+s7 n 

I 4 46e+3 

4 44e*3 

4 43e+3 

441e*3 

4 40e+3 

Fig. 29. 
evolutive spectral line estimation algorithm. 

Frequency modulation law extracted by the use of the 

/ - 0 0  
I a2 
I 

Fig. 30. Interpretation of the stationary point. 

information. In the case of signals satisfying asymptotic 
requirements, we have shown that the ridge of the trans- 
form can be estimated by only considering “horizontal” 
or “vertical” derivatives of the phase of the transforms. 
Nevertheless, explicit calculus made under different signal 
approximations have led us to consider a more general 
definition of the ridge, given by the “crossed criterion,” 
which necessitates a consideration of the phase derivative 
of the transform with respect to both parameters of the 
representations. In the same way, by exchanging time and 
frequency, we have shown that a similar criterion leads to 
the estimation of the group delay and the spectral density of 
frequency broadband signals. These techniques have been 
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Fig. 31. Behavior of the wavelet transform. 

extended to the case of multi component signals and applied 
to the analysis of real sounds. It is difficult to describe the 
sounds obtained after resynthesis through a modelization 
with words, but during presentations, people agree that 
the synthesized sound is generally indistinguishable from 
the original one. Another aspect, even more difficult to 
describe, is the possibility given by such a modelization 
concerning manipulations of the sounds, permitting exotic 
and intimate transformations. 

APPENDIX 

A. Stationary Phase-Based Approximations 
If the signal satisfies asymptotic properties, its transform 

is given by a strongly oscillating integral which can be 
approximated by the stationary phase method [2]-[4]. We 
shall show that the stationary points, corresponding to the 
strongest contribution of the integral, can be linked to the 
frequency modulation law of the signal and can be retreived 
from the transform itself. Even though this approach does 
not permit to conclude on the limits of the algorithm derived 
this way, it gives general information on the behavior of 
the transforms. 

Let us call @(b,a)  (respectively, @(.,a)) the phase 
of the wavelet (respectively, Gabor) transform, M (  b, a )  
(respectively, M ( T ,  a ) )  its modulus, and let us assume that 
the function W ( t )  is a gaussian: W ( t )  = exp(&). 

I) The Wavelet Case: The wavelet transform is expressed 
by 

Under the hypothesis of asymptotism, the phase station- 
arity criterion at a point t ,  ( a )  leading to an approximation 
of this integral is given by 

Let us first discuss the physical interpretation of the 
point t , (a).  One first has to assume that this point is 
unique for a given value of a. For that purpose, consider 
a time-frequency plan {t ,  w } ,  and draw the curve 
(see Fig. 30). For any scale parameter a, one can also 
draw the curve 2. The stationary point t ,  is then located 

= % in t = t s ( a ) .  

at the intersection of the two curves. For each curve 
y, there exists a unique stationary point t s ( a ) ,  being a 
function of a. Consequently, this set of point carries all the 
frequency information contained in the signal, as soon as 
the frequency modulation law is monotonous. 

Moreover, if the wavelet transform is considered as a set 
of bandpass filters tuned to the frequency y, a point t ,  (a,) 
represents the time at which to expect a maximum response 
of the filter indexed by a,, since this one is then tuned to 
the instantaneous frequency of the signal. 

Thus ts ( a )  is directly related to the reciprocal function of 
the instantaneous frequency of the signal, and knowledge 
of it leads to the frequency modulation law of the signal. 

It is interesting to look at the behavior of the wavelet 
transform under such an approximation. By denoting @: = 
a"$~;(aO), then the transform is approximated by 

1 1 
2 2 

+ -Arctan(a2a2@.',') + - ( b  - t s ( a ) ) 2  

The transform can be interpreted as a superposition 
of wavelets localized around the points b = t , (a)  (see 
Fig. 31). 

This set of points in the { b ,  a }  half-plane have a intuitive 
meaning, since through the definition of the stationary 
points, they correspond to the points ( b ,  a )  where = 
- WO 

a *  
2)  The Gabor Case: The Gabor transform reads 

The phase stationarity criterion at a point t,(a) leading 
to an approximation of this integral is given by = Q: 

in t = t ,  (a) .  Its interpretation remains the same as in the 
wavelet case, t ,  ( a )  being exactly the reciprocal function of 
the instantaneous frequency of the signal. 

By denoting @: = d2'$j;(a)),  then 

1 1 
2 

+ -Arctan(a2@/,') + z ( ~  - ts(a))' 
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The behavior of the transform is the same as in the 
wavelet case, the set of important points being defined by 

The crucial point is now the estimation of the curves 
b = ts (a)  and r = ts (a)  from the coefficients of the 
transforms. 

By derivations of the phase of the wavelet transform, it 
is easy to prove that the set of points b = t s (u )  satisfies 

either T = ts (a)  or + a& (.) = a. 

d @ ( b , a )  - WO - d @ s ( b )  
. _ _ _ - -  - -  

a b  a db ' 

In the same way, in the Gabor case, the set of points 
r = is(.) satisfies 

W 7 , Q )  - d @ S  (7) 

w.r, a)  

either ~ -a=- 
d r  d r  

= 0. 
do! 

In both cases, we shall call the set of points satisfying 
these equations a "ridge." 

In the Gabor case, the ridge defined from the phase 
derivative corresponds to the local maximum of the modu- 
lus of the transform with respect to a. In the wavelet case, 
because of the term: o.Jz;; being a function of a, 
the maximum of the modulus of the transform with respect 
to a does not correspond to the ridge defined from the phase, 
and this maximum cannot be used to estimate the exact 
frequency modulation law. On the ridge, the difference 
between the signal and the restriction of the transforms is 
smallest. Consequently, the modulus of these restrictions 
along the ridge gives a good estimate of the amplitude 
modulation law of the signal while their phase derivative 
with respect to r or b gives a good estimate of its frequency 
modulation law [3]. 

or ~ 

( l + a 4 & @ " 2 s ) $  ' 

B. Specral Lines Estimation 
In this section, we describe an accurate spectral lines 

estimation algorithm. The interested reader can find com- 
plements in [12]. We shall assume that on the time support 
of W(t  - r ) ,  localized around t = 7 ,  the amplitude 
modulation law of each component can be locally described 
by a polynomial of order J .  One can then use the expression 
of the Gabor transform of a single spectral line up to order 
J .  

In this case, the gabor transform of the signal is exactly 
given by 

. ( l / i j ( ~ ) ( w k  - cy) exp(iwk.r) 

+ l/ij(~)(-wk - a) exp( - iwkr ) ) .  
We consider the restriction of L, (T,  a )  for ap = w p ,  1 5 

Let us denote cg = cos(3;) and sg = sin(j;) and 
P I N .  

1 W p k  ( 3 )  - - z( 1 l/ii(J) (wk - Q P )  + l/ii(+"k - Q p ) )  

2wj;) = +(l/ii(+k - c y P )  - W)(-q - ap) ) .  

For any p ,  one can write the two linear systems 

- ~ k ) ( r )  cos(wkr)s3 l~$)) = Im{L,(T, ap)}. 

These two equations are not coupled, since V j ,  c:, sg = 0. 
Moreover, Vj,cz3+1 = 0 and sz3 = 0. Consequently, each 
system is composed of ( J  + 1 )  . N unknowns that are, 
respectively: 

A p ) ( r )  cos(wfir), Ajz2"t1)(.r) sin(wkr) 

A Y ) ( ~ )  sin(wkr), A P + ' ) ( ~ )  cos(wk7).  

At this time, one only has N equations, but the J . N 
missing equations can be obtained by considering the 
derivatives with respect to a upto order J of the restrictions 
of the transform at the frequencies aP. The two systems 
then become 

V q , l  5 4 I J ; Y p , l  L p 5 N 

Since all these equations are linear, and since the deriva- 
tion of the restrictions of the Gabor transform with respect 
to Q can be transposed directly on the Fourier transform 
of the window, the filter bank interpretation is still valid. 
7 3 s  time, each filter is composed by linear combinations 
of the functions W(w - arc), and also their derivatives with 
respect to w until order J .  

Since each filter enables the extraction of an amplitude 
modulation law being a polynom of order J on the time 
support of W(t - r ) ,  it satisfies the following conditions: 

pk(ap) = s p k  

f i k ( - ~ ~ ) = O  l < p < N  l < k < N  

= O  dg F k  (ap) 
dw3 

d3Fkjc(-olp) = O  1 < p  5 N 1 5  k 5 N 1 < j  _< J. 
dw3 

PROCEEDINGS OF THE IEEE, VOL 84, NO 4, APRIL 1996 582 

Authorized licensed use limited to: Richard Kronland-Martinet. Downloaded on November 17, 2009 at 13:01 from IEEE Xplore.  Restrictions apply. 



Fig. 32. Filters for a linear amplitude estimation. 

The Fourier transform on a linear scale of a family of 
filters allowing the extraction of components with locally 
linear amplitudes is shown in Fig. 32. The horizontal axis 
is the frequency. The input signal is a sum of six sine 
waves. The dotted vertical lines indicate the position of 
each frequency in the spectrum. The six filters are displayed 
vertically stacked, two of them being shaded gray. The 
Fourier transform of a filter equals one for its corresponding 
spectral line and equals zero for the five other frequencies. 
The first derivative of the Fourier transform of each filter 
vanishes for the six frequencies. 

C. Noncrossing Multiridges Estimation 
We present here the way to build an auto-adaptive filter 

bank aimed at the disentangling of frequency-modulated 
asymptotic components. 

As in the case of the spectral lines, it is possible to define, 
at any time T,, an operator O(r,) acting now on a vector 
of scalar products Lg(7,) (instead of horizontal restrictions 
of the transform) between the signal and Gabor functions 
at the different frequencies a k  (T,). 

1)  An Intuitive DeJinition of the Operator: O(T,): Let us 
suppose that at time r,, one knows the exact parameters 
ak(rO) defined by 

Let us call W(T,) the matrix of elements defined by 

Then O(r,) = W-l(r,) is obviously a good operator, 
since it directly uses the frequency modulation law of each 
component. 

Indeed 

k = l  

Then, each component can be found just by applying 
O( r,) to L, (7, , cyp  (7 , ) ) .  Unfortunately, this calculation 
enables the extraction of independant components under the 
assumption that the frequency modulation laws are known. 
Let us try now to see if one can obtain an approximation 
of each frequency modulation law. 

2)  A Suboptimal Operator: O'(T): Let us assume that 
each elementary component can be considered locally either 
as a sine wave, or as a linear chirp. Such an hypothesis 
is relevant since it just says that the frequency of each 
component does not move too fast on the wavelet support 
around r,, and is equivalent to replace the phase of each 
component either by its first or second order limited expan- 
sion around t = 7 .  We shall describe the constant frequency 
approximation. The linear frequency approximation has 
been developed in the previous section. 

Let us consider a single component A k  exp(i@k(t))  and 
write 

@ k ( t )  = @ k ( T )  f (t - T)@/, (T) .  

Its Gabor transform is then given by 

hg(r, a )  = A ~  / ~ ( t  - r) exp(-ia(t  - r)) 

. exp( i (@k(r)  + (t - T)@; (T ) ) )  dt 
= Ak exp(i(@k(.r) - T@;(T ) ) )  

a exp(it@/,(r))  d t .  
The integral term is then the Gabor transform of a 

monochromatic signal with frequency @/, (T ) .  The Gabor 
transform is then approximated by 

~ ~ ( 7 ,  a )  = A ~ @ ( @ / , ( T )  - a)exp( i4k ( r ) ) .  
- 

Let ak(ro) be the fixed point of the ridge estimation 
algorithm, corresponding to the kth component, and assume 
that ak(ro) = @';6(r0) As previously, one defines a new 
operator O'(r) with the help of 

W p k ( T o )  = / exP(iak(To)t)lil'(t - 7,) 

. exp(--iap(To)(t - ro)) d t  I 

- 
= @(%(70) - a p ( T J ) ) .  

Obviously, in this case, one has 
N 

Arc exp(i@k(T,)) = Wgl(To)Lg(To, ~ ~ ( 7 ~ ) ) .  
p = l  
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This approximation can seem to be strong, but as we wilI 
see in the examples, the results obtained are satisfying. 

Nevertheless, by assuming that W ( t )  is a gaussim, 
instead of using a constant frequency approximation, one 
can use a linear one. If one assumes that W(t )  is a 
gaussian, one then obtain an other definition of L?'(r) 
through Wpk(ro), coming directly from the results of the 
previous section 

Concurrently to the definition of O(T), one has replaced, 
on the support of W ( t )  located at r,, the frequency modula- 
tion law of each component either by a constant or a h e a r  
function corresponding to its estimated version at time ro if 
the component was alone. Obviously, the more the signal 
is asymptotic with respect to W(t) ,  the more fl'(r) will 
be close to O(r) .  Nevertheless, such approximations of the 
frequency modulation laws are no more available when the 
signal is a sum of elementary contributions. Moreover, in 
the linear frequency approximation, the second derivative 
of the phase of each component is unknown. 

3) A Self-Building Operator: O'(r): automatic extraction 
of multiridges. For clarity, one will start by a constant 
frequency approximation, and then switch to the linear one. 

We can achieve a self definition of f2'(r), by a general- 
ization of the ridge estimation algorithm to multicomponent 
signals. Let us denote 4 the interval of convergence 
corresponding to the transform of a single component s k ( t )  
and let us call a!;((.) initial values of scale parameters, 
belonging respectively to Ik . 

Let us define the initial vector X o ( r )  = fl 'o(r)Lo(r), 
where Lo(r) represents the vector of scalar products be- 
tween the signal and the Gabor functions at the frequencies 

In the case of a constant frequency approximation, the 
following algorithm builds iteratively (on index n) the 
operator fl'(r), the trajectories a!k ( r ) ,  and the functions 
A k  exp(i@k(T)) at any time T :  

4 (r) .  

X" ( r )  = f2'Rln(r)Ln(r) with 
N 

p = l  

a a;+'(.) = -Arg{Xt(r)} 87 
f2'n+1(r) = W-'(r) with 

- 
W P k ( T )  =W((O;+'(r) - a!,n+'(r)). 

For a fixed E ,  arbitrary small, the convergence criteria are 
the following: 

'dk,  1 5 k 5 N I.;+'(.) - .;(.)I 5 E .  

One proGeeds to time r + dr by the relation 

a;(r + d7) = a!T(r) 

In the case of a linear frequency approximation, one also 
has to estimate iteratively at(.). As we have seen before, 
such an estimation requires the calculus of a combination 
of the "horizontal" and "vertical" derivatives of the phase 
of the transform, as well as the use of a chirped Gabor 
function. 

The algorithm then reads 

X " ( r )  =f2'"(r)Ln(r) with 
N 

p=l  

a d az+'(r) = -Arg{X,"(r)} + P+Arg{Xz(r)] 
dr aa! 

f2'n+1(r) = W-'(r) with . 

0 2  (a;+'(.) - a!,"+'(r))2 
.exp -- ( 2 1 - i."(p;+'(r) - pP"+l(r)) 

For a fixed E, arbitrary small, the convergence criteria 
are the following: 

Y k ,  1 5 IC 5 N la;+'(.) - a!;(.)/ 5 E 

IP,"+'(.) - PZ(.)I 5 
One proceeds to time r + d r  by the relations 

ag(r+dr) = aT(r)+pp(r) dr, P , g r + d r )  = PF(7). 
At each iteration of the ridge estimation algorithm, we 

have introduced the algorithm allowing the separation of 
the components. In fact, at the first iteration, the initial 
frequency values do not have any reason to match the theo- 
retical ones. Consequently, a component Xk ( T )  will mainly 
contain the component k but also a few of the other ones. 
At each new iteration, if one estimated ridge comes closer 
to the theoretical one, then the "weight" associated to the 
other contributions will necessarily decrease. Consequently 
at the next iteration, the estimated ridge will be closer to 
the theoretical one. 
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