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Sound modelling is an important part of the analysis– andyor the frequency of the partials can, for example,
synthesis process since it combines sound processing and be manipulated through spectral analysis. Time–
algorithmic synthesis within the same formalism. Its aim is frequency analysis allows the separation of the time
to make sound simulators by synthesis methods based on and frequency characteristics associated with the
signal models or physical models, the parameters of which sound and is of great interest (Kronland-Martinet
are directly extracted from the analysis of natural sounds. 1988). However, this approach conflicts with a veryIn this article the successive steps for making such systems

important mathematical principle which states thatare described. These are numerical synthesis and sound
one cannot arbitrarily modify a time–frequency rep-generation methods, analysis of natural sounds, particularly
resentation of a signal. This constraint is due to thetime–frequency and time–scale (wavelet) representations,
existence of the so-called ‘reproducing kernel’ whichextraction of pertinent parameters, and the determination of

the correspondence between these parameters and those takes into account the redundancy of such represen-
corresponding to the synthesis models. Additive synthesis, tations (Kronland-Martinet et al. 1987). It corre-
nonlinear synthesis, and waveguide synthesis are discussed. sponds to the uncertainty principle which states that

one cannot be as precise as one wishes in the localis-
ation of both the time and the frequency domains.
This principle imposes the concept that the time–fre-

1. THE SOUND MODELLING CONCEPT quency domain corresponding to the uncertainties
(time–frequency atoms) be considered instead of iso-Analysis–synthesis is a set of procedures to recon-
lated values of the representation. It is then naturalstruct a given natural sound and collect information
to make the transformations act on these domains inabout it. Different methods can be applied, and the
order to conserve the necessary correlations betweensuccess of each method depends on its adaptive pos-
close representation values. This is done by using asibilities and the sound effect to be produced. Figure
mathematical operation known as a projection,1 shows the most commonly used procedures. The
which can transform any image into a time–frequencythree parts of the figure correspond to different pro-
representation. The constraints limit the time–fre-cesses. The central level corresponds to a direct analy-
quency transformation processes and make it difficultsis–synthesis process and consists of reconstructing a
to determine the correspondence between the alteredsound signal by inversion of the analysis procedure.
values and the obtained sounds. Nevertheless, veryThis is a useful process which uses analysis to get
interesting sounds can be obtained by carefully usinginformation about a sound, and synthesis (inversion)
such altering procedures (Arfib and Delprat 1993). Into verify that no information is lost. The analysis will
this article we will pay special attention to the lowermake it possible to classify and characterise audio
part of figure 1 which corresponds to sound model-signals (Kronland-Martinet, Morlet and Grossman
ling. In this part, the representations obtained from1987), but the result of the process will simply be a
the analysis provide parameters corresponding to thereproduction of the natural sound. From a musical
synthesis models. The concept of the algorithmicpoint of view, a representation of sounds by analysis
sampler (Arfib, Guillemain and Kronland-Martinetis useful when one intimates sound modifications.
1992) consists of simulating natural sounds throughThis sound transformation process corresponds to
a synthesis process that is well adapted to algorithmicthe upper path in figure 1 and consists of altering
and realtime manipulations. The resynthesis and thethe coefficients of the representation between the
transformation of natural sounds are then part of theanalysis and the synthesis procedures. According to
same concept.the analysis method used, different aspects of the

The paper is organised as follows. We describe thesound can be altered. The energy distribution
most commonly used synthesis methods, analysis
methods such as time–frequency and wavelet trans-* This work has been partly supported by the Norwegian Research

Council. forms, and the algorithms used for separating and
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Figure 1. General organisation of the analysis–synthesis and modelling concept. Each underlined item corresponds to a
section in the text.

characterising spectral components. We conclude by methods are similar to shaping and building struc-
tures from materials, and the three principal groupsshowing how the analysis of real sounds can be used

to estimate the synthesis parameters of the signal can be classified as follows:
models and of the physical models. Most of these

• additive synthesis,techniques have been developed in our laboratory in
• subtractive synthesis,Marseille, France.
• global (or nonlinear) synthesis.

2. SOUND SYNTHESIS MODELS
2.1.1. Additive synthesis

Digital synthesis uses methods of signal generation
A complex sound can be constructed as a super-that can be divided into two classes:
position of elementary sounds, generally sinusoidal

• signal models aimed at reconstructing a percep- signals modulated in amplitude and frequency (Risset
tive effect without being concerned with the 1965). For periodic or quasi-periodic sounds, these
specific source that made the sound, components have average frequencies that are mul-

• physical models aimed at simulating the behav- tiples of one fundamental frequency and are called
iour of existing or virtual sound sources. harmonics. The periodic structure leads to electronic

organ sounds if one does not consider the microvaria-
tions that can be found through the amplitude and

2.1. Signal model synthesis frequency modulation laws of the components of any
real sound. These dynamic laws must therefore beSignal models use a purely mathematical description

of sounds. They are numerically easy to implement, very precise when one reproduces a real sound. The
advantage of these synthesis methods is the potentialand they guarantee a close relation between the syn-

thesis parameters and the resulting sound. These for intimate and dynamic modifications of the sound.
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Granular synthesis can be considered as a special the sound generation system with respect to its physi-
cal behaviour. Such models can be constructed eitherkind of additive synthesis, since it also consists in

summing elementary signals (grains) localised in both from the equations describing the behaviour of the
waves propagating in the structure and their radi-the time and the frequency domains (Roads 1978).
ation in air, or from the behaviour of the solution of
these equations. The first approach is costly in terms

2.1.2. Subtractive synthesis of calculations and is generally used only in connec-
tion with research work (Chaigne 1995), unless oneA sound can be constructed by removing undesired
uses a simplified version consisting of modelling thecomponents from an initial, complex sound such as
structure by an association of simple elementsnoise. This synthesis technique is closely linked to the
(Cadoz, Luciani and Florens 1984) (masses, springs,theory of digital filtering (Rabiner and Gold 1975)
dampers, . . .). Synthesis by simulation of the solutionand can be related to some physical sound generation
of the propagation equation has led to waveguidesystems such as speech (Flanagan, Coker, Rabiner,
synthesis models (Smith 1992), which have the advan-Schafer and Umeda 1970, Atal and Hanauer 1971).
tages of being easy to construct and of having aThe advantage of this approach (excluding the physi-
behaviour close to that of a real instrument. Suchcal aspects of physical modelling synthesis, discussed
synthesis methods are, consequently, well adapted tolater) is the possibility of uncoupling the excitation
the modelling of acoustical instruments.source and the resonance system. The sound trans-

We describe below the principles of these methodsformations related to these methods often use this
in order to reveal their parameters, together withproperty to make hybrid sounds or crossed synthesis
their correlation to physical mechanisms. These par-of two different sounds by combining the excitation
ameters are related to the structure of the instrumentsource of a sound and the resonant system of another
as well as to the instrumental performance. If we con-(Makhoul 1975, Kronland-Martinet 1989). A well-
sider a vibrating string, the Shannon theorem statesknown example of cross-synthesis is the sound of a
that one can, without loss of information, split thetalking ’cello obtained by associating an excitation of
movement into a succession of instantaneous clichésa ’cello string and a resonance system corresponding
separated by an interval of time T called the samplingto the time-varying formants of the vocal tract.
period. If c is the propagation speed of the waves in
the string, this is equivalent to cutting the string into
intervals of length xGcT and considering the propa-

2.1.3. Global synthesis

gation as a passage from one elementary cell to
Simple and ‘inert’ signals can be dynamically mod- another. This operation corresponds to a spatial
elled using global synthesis models. This method is ‘discretisation’ of the structure: one can then consider
nonlinear since the operations on the signals are not the wave propagation as the result of a succession of
simple additions and amplifications. The most well- transformations or filterings of the initial excitation.
known example of global synthesis is audio frequency In the ideal case in which we neglect losses and
modulation (FM) updated by John Chowning nonlinearities, there is only a displacement of the
(Chowning 1973) which revolutionised commercial waves (in two directions), and the result can thus be
synthesizers. The advantages of this method are that simulated by a succession of delay lines correspond-
it calls for very few parameters, and that a small num- ing to the sampling period T, symbolised in digital
ber of operations can generate complex spectra. signal processing by the variable z−1. In the more
These simplify numerical implementation and con- realistic case in which the waves undergo an attenu-
trol. However, it is difficult to control the shaping of ation depending on the frequency, a filter P should
a sound by this method, since the timbre is related be added between each delay. If in addition the
to the synthesis parameters in a nonlinear way and medium is dispersive, a ‘dephasor’ or an all-pass filter
continuous modification of these parameters may D should be added (figure 2).
give discontinuities in the sound. Other related
methods have proved to be efficient for signal syn-
thesis, such as waveshaping techniques (Arfib 1979,
Le Brun 1979).

2.2. Synthesis by physical modelling

This is a more recent technique, which we will
describe more precisely than signal model synthesis.
Unlike signal models which use a purely mathemat- Figure 2. Discrete simulation of the wave propagation in a

dissipative and dispersive medium.ical description of sounds, physical models describe
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The analysis methods of signals can be divided
into two principal classes: parametric methods and
nonparametric methods. The parametric methods
require a priori knowledge of the signal, and consist
of adjusting the parameters of a model. The nonpara-
metric models do not need any knowledge of the sig-
nal to be analysed, but they often require a large
number of coefficients.

Figure 3. Propagation model in a bounded dissipative and
dispersive medium. 3.1. Parametric methods

These techniques are generally optimal for the rep-
The theory of digital filters allows elements of the resentation of signals adapted to the chosen para-

same type to be gathered. Thus, the propagation metric model. The most common method used for
medium can be represented by a succession of 3 processing sounds is linear prediction (LPC). This
elements, i.e. a delay line, an attenuating filter for technique is adapted to signals from sound pro-
simulating the dissipation, and an all-pass filter for duction systems of the source–resonance type. The
simulating the dispersion. Real instruments have resonant filter should be modelled by a digital all-
strings of finite length and the waves propagated pass filter the coeffficients of which are related to the
through it are reflected at the ends. The reflections frequency and to the width of the formants. The
correspond to a return of the initial waves, with applications of analysis–synthesis for speech signals
modifications depending on the boundary conditions. are numerous, because of a good correspondence
Thus one can simulate the wave behaviour corre- between the physics of the vocal tract and the linear
sponding to the solution of the equations. For that filtering. The input signal of LPC systems is generally
purpose, one uses a looped system which, in addition a broadband noise or a periodic signal adapted to a
to the delay line, attenuating filter and the all-pass subtractive synthesis technique.
filter, also makes use of a filter corresponding to the
reflections R (figure 3).

3.2. Nonparametric methodsSynthesis models related to a particular digital fil-
ter are known as waveguide models. They can be used Nonparametric techniques for analysis of sound sig-
to simulate many different systems, such as a tube nals generally correspond to representations with
representing the resonant system in wind instruments physically andyor perceptively meaningful param-
(Cook 1992). eters. The best known is the spectral representation

obtained through the Fourier transform. In this case
the signal is associated with a representation giving

3. ANALYSIS OF REAL SOUNDS the energy distribution as a function of frequency. As
mentioned earlier, this representation is not sufficientThe analysis of natural sounds calls for several

methods giving a description or a representation of for characterising the timbre and the dynamic aspects
of a sound. In what follows we describe the jointpertinent physical and perceptive characteristics of

the sound (Risset and Wessel 1982). Even though the time–frequency representations considering both
dynamic and frequency aspects. The time–frequencyspectral content of a sound is often of great import-

ance, the time course of its energy is at least as transformations distribute the total energy of the sig-
nal in a plane similar to a musical score in which oneimportant. This can be shown by artificially mod-

ifying the attack of a percussive sound in order to of the axes corresponds to the time and the other to
the frequency. Such representations are to soundmake it ‘woolly’, or by playing the sound backwards.

The time and frequency evolution of each partial what musical scores are to melodies. There are two
ways of obtaining this kind of representationcomponent is also significant. The vibrato is a percep-

tively robust effect that is essential, for example for depending on whether the analysis acts on the energy
of the signal or on the signal itself. In the first case thethe synthesis of the singing voice. Another essential

aspect that should be taken into account when cre- methods are said to be nonlinear, giving, for instance,
representations from the so-called ‘Cohen’s class’.ating a sound corresponding to a plucked vibrating

string is the different decay times of the partials. The best known example of transformations within
this class is the Wigner–Ville distribution (FlandrinThese examples illustrate the need for analysis

methods giving access to time and frequency vari- 1993). In the other situation the representations are
said to be linear, leading to the Fourier transformations of sounds. To solve this general analysis prob-

lem of signals, a collection of methods called joint with a sliding window, the Gabor transform, or the
wavelet transform. The linear methods have, at leastrepresentations has been designed.
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as far as sound signals are concerned, a great advan- frequency atom. This comparison is mathematically
expressed by a scalar product. Each horizontal linetage over the nonlinear methods. Linear methods

make the resynthesis of signals possible and they of the Gabor transform then corresponds to a fil-
tering of the signal by a bandpass filter centred at aensure that no spurious data cause confusion during

the interpretation of the analysis. These spurious data given frequency with a shape that is constant as a
function of frequency. The vertical lines correspondcan occur in nonlinear analysis as a result of cross-

terms appearing in the development of the square of to the Fourier transform of a part of the signal, iso-
lated by a window centred on a given time. The trans-a sum. This is why we shall focus on the linear time–

frequency methods. form obtained this way is generally complex, since
the atoms themselves are complex, giving two comp-The linear representations are obtained by decom-

posing the signal into a continuous sum of elementary lementary images (Kronland-Martinet et al. 1987).
The first one is the modulus of the transform andfunctions having the same properties of localisation

both in time and in frequency. These elementary corresponds to a classical spectrogram, the square of
the modulus being interpreted as the energy distri-functions correspond to the impulse response of

bandpass filters. The central frequency of the analysis bution in the time–frequency plane. The second
image corresponding to the phase of the transform isband is related to a frequency parameter for time–

frequency transformations and is related to a scaling generally less well known and less used, but it never-
theless contains a lot of information. This infor-parameter for wavelet transforms. The choice of the

elementary functions gives the shape of the filter. mation concerns mainly the ‘oscillating part’ of the
signal (figure 5). Actually, the time derivative of the
phase has the dimension of a frequency and leads to

3.2.1. Gabor transform the frequency modulation law of the signal compo-
nents (Guillemain and Kronland-Martinet 1996).In the case of the Gabor transform, the elementary

functions, also called time–frequency atoms, are all
generated from a ‘mother’ function (window) trans-

3.2.2. Wavelet transformlated in time and in frequency. The ‘mother’ function
is chosen to be well localised in time and frequency The wavelet transform follows a principle close to

that of the Gabor transform. Again the horizontaland to have finite energy (for instance a Gaussian
function) (figure 4). lines of the wavelet transform correspond to a fil-

tering of the signal by a filter, the shape of whichEach value of the transform in the time–frequency
plane is obtained by comparing the signal to a time– is independent of the scale, but whose bandwidth is

Figure 4. Two Gabor functions in the time domain (left), and their Fourier transform (right). In the Gabor representation,
all the filters are obtained by shifting a ‘mother’ function in frequency, yielding a constant absolute bandwidth analysis.
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Figure 5. Gabor transform of the sum of six harmonic components analysed with two windows; the horizontal axis is time,
the vertical axis is frequency. The upper picture is the modulus, the lower is the phase, represented by modulo-2π ; their
values are coded with a greyscale. In (a) the window is well localised in frequency, allowing the resolution of each compo-
nent. In (b) the window is well localised with respect to time, leading to a bad separation of the components in the
frequency domain, but showing impulses in time because the signal can also be considered as a filtered Dirac comb. In
both figures, the phase behaves similarly, showing the periodicity of each component. This property has been used to
estimate the frequencies of the components accurately.

inversely proportional to the scale. The analysis func- observed phenomena (figure 7). A high-frequency
phenomenon should be analysed with a function thattions are all obtained from a ‘mother’ wavelet by

translation and change of scale (dilation) (figure 6). is well localised in time, whereas a low-frequency
phenomenon requires a function well localised in fre-The ‘mother’ wavelet is a function with finite

energy and zero mean value. These ‘weak’ conditions quency. This leads to an appropriate tool for the
characterisation of transient signals (Guillemain et al.offer great freedom in the choice of this wavelet. One

can, for example, imagine the decomposition of a 1996). The particular geometry of the time–scale rep-
resentation, where the dilation is represented accord-speech signal in order to detect the word ‘bonjour’

pronounced at different pitches and with different ing to a logarithmic scale (in fractions of octaves)
permits the transform to be interpreted like a musicaldurations. By using a ‘mother’ wavelet made of two

wavelets separated, for example, by an octave, one score associated with the analysed sound.
can detect octave chords in a musical sequence
(Kronland-Martinet 1988). This corresponds to a

3.3. Parameter extractionmatched filtering at different scales. One important
aspect of the wavelet transform is the localisation. The parameter extraction method makes use of the

qualitative information given by the time–frequencyBy acting on the dilation parameter, the analysing
function is automatically adapted to the size of the
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Figure 6. Two wavelets in the time domain (left), and their Fourier transform (right). In the wavelet representation, all the
filters are obtained through dilation of a ‘mother’ function in time, yielding a constant relative (∆ωyω) bandwidth analysis.

Figure 7. Wavelet transform of the same sum of six harmonic components. In contrast with figure 5 obtained through the
Gabor transform, the wavelet transform privileges the frequency accuracy at low frequency (large scales) and the time
accuracy at high frequency (small scales).

quantitative information from the signal. Even extracted from the transform. Of course, this process
must be efficient even for extracting components thatthough the representations are not parametric, the

character of the extracted information is generally are very close to each other and have rapidly chang-
ing amplitude modulation laws. Unfortunately, alldetermined by the supposed characteristics of the sig-

nal and by future applications. A useful represen- the constraints for constructing the representation
make this final operation complicated. The justifi-tation for isolated musical instrument sounds is the

additive model. It describes the sound as a sum of cation is of the same nature as the one given in the
introduction in connection with sound transform-elementary components modulated in amplitude and

in frequency, which is relevant from a physical and a ation through modifying the representations. Absol-
ute accuracy both in time and in frequency isperceptive point of view (figure 8).

Thus, to estimate parameters for an additive resyn- impossible because of a mathematical relation
between the transform at a point of the time–fre-thesis of the sound, amplitude and frequency modu-

lation laws associated with each partial should be
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Figure 8. Gabor representation of the first 75 ms of a trumpet sound. Many harmonics with different time dependencies
are visible in the modulus picture. The phase picture shows different regions, around each harmonic, where the phase
wraps regularly at the time period of each harmonic, as in the previous figure.

Human hearing follows a rather similar ‘uncertainty’ transforms on the frequency axis is of great import-
ance, since the central frequencies of the filters can beprinciple: to identify the pitch of a pure sound, it

must last for a certain time. The consequences of precisely calibrated at the frequencies of the compo-
nents. Another important aspect of the musical soundthese limitations on the additive model parameter

estimation are easy to understand. A high-frequency is the frequency modulation of the components, in
particular during the attack of the sound. Here theresolution necessitates analysis functions that are well
judicious use of the time derivative of the transformlocalised in the frequency domain and therefore badly
phase offers the possibility of developing iterativelocalised in the time domain. The extraction of the
algorithms tracking the modulation laws, thus pre-amplitude modulation law of a component from the
cluding the computation of the whole transform.modulus of the transform on a trajectory in the time–
These algorithms use frequency-modulated analysisfrequency plane smoothes the actual modulation law.
functions, the modulations of which are automati-This smoothing effect acts in a time interval with the
cally matched to the ones of the signal (Guillemain etsame length as the analysis function. Conversely, the
al. 1996).choice of well-localised analysis functions in the time

domain generally yields oscillations in the estimated
amplitude modulation laws, because of the presence

4. FEEDING THE SYNTHESIS MODELSof several components in the same analysis band. It
is possible, however, to avoid this problem by The extraction techniques using the time–frequency
astutely using the phase of the transform to precisely transforms directly provide a group of parameters
estimate the frequency of each component and by which permit the resynthesis of a sound with the
taking advantage of the linearity in order to separate additive model. In addition, they can be used for
them, without a hypothesis on the frequency selec- identification of other synthesis models. The direct
tivity of the analysis (figure 9). parameter identification techniques for the nonlinear

The procedure uses linear combinations of analysis models are difficult. Generally they do not give an
functions for different frequencies to construct a exact reproduction of a given sound. The estimation
bank of filters with a quasi-perfect reconstruction. criteria can be statistical (minimisation of nonlinear
Each filter specifically estimates a component while functions) (Horner 1996) or psychoacoustic (centroid
conserving a good localisation in the time domain. of spectrum) (Beauchamp 1975). The direct esti-
Different kinds of filters can be designed, which per- mation of physical or subtractive model parameters
mit an exact estimation of amplitude modulation requires techniques like linear prediction, used, for
laws locally polynomial on the time support of the instance, in speech synthesis (Markel and Gray 1976).
filters (Guillemain et al. 1996) (figure 10). Another solution consists in using parameters from

The strict limitations of the wavelet transform or the additive synthesis model to estimate another set
of the Gabor transform can be avoided by optimising of parameters corresponding to another synthesis
the selectivity of the filter as a function of the density model. In what follows we shall see how this oper-

ation can be done for the most common models.of the frequency components. The use of continuous
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Figure 9. Estimation of the amplitude modulation law of a partial of a saxophone sound. The curves on the left show the
estimated amplitude and frequency modulation laws using a straightforward Gabor transform. Several harmonics are
present on the frequency support of the analysing function, yielding strong oscillations. The curves on the right show the
estimated modulation laws using the filter bank displayed in figure 10. Although the time support remains the same, the
oscillations are automatically cancelled by the algorithm.

Figure 10. Filter bank in the frequency domain, allowing the estimation of spectral lines; one of the filters is darkened.
The Fourier transform of each filter equals unity for the frequency it estimates, and zero for all the others. Its first derivative
equals zero for all the frequencies. One can prove that this kind of filter allows exact estimation of locally linear amplitude
modulation laws.

4.1. Additive synthesis criteria. The first reduction consists of associating
each amplitude and frequency modulation law with

The parameter estimation for the additive model is a piecewise linear function (Horner and Beauchamp
1996) (figure 11). This makes it possible to automati-the simplest one, since the parameters are determined

in the analysis. The modelling of the envelopes can cally generate, for example, a Music V score associ-
ated with the sound.greatly reduce the data when one uses only perceptive
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Figure 11. Original and modelled envelopes of a saxophone sound. The modelled curve is defined with thirty-five break-
points and linear interpolation between them, while the original is defined on 32,000 samples.

Another possible reduction consists in grouping 4.3. Waveshaping and frequency modulation synthesis
the components from the additive synthesis (group

From the parameters corresponding to the groupadditive synthesis) (Kleczkowski 1989, Oates and
additive synthesis (complex waves and their associ-Eagleston 1997). This can be done by statistical
ated amplitude laws), one can deduce nonlinearmethods, such as principal component analysis, or by
synthesis parameters (Kronland-Martinet and Guille-following an additive condition defined as the percep-
main 1993). The technique consists of approachingtual similarity between the amplitude modulations of
each complex wave shape by an elementary nonlinearthe components (Kronland-Martinet and Guillemain
module. In the case of waveshaping, the knowledge1993). This method offers a significant reduction in
of the complex wave allows the calculation of anthe number of synthesis parameters, since several
exact distortion function. In the case of FM, the spec-components with a complex waveshape have the
tral components should be grouped, not only accord-same amplitude modulation laws (figures 12 and 13).
ing to a perceptive criterion, but also according to
a condition of spectral proximity. This condition is
meaningful because real similarities between envel-

4.2. Subtractive synthesis opes of neighbouring components are often observed.
To generate the waveform corresponding to a groupAn evolutive spectral envelope can be built by cre-
of components by an elementary FM oscillator, theating intermediate components obtained from the
perceptive approach is best suited. In that case, onemodulation laws of the additive modelling. Their
can consider the energy and the spectral extent of theamplitude modulation laws are obtained by inter-
waveforms which are directly related to the modu-polation of the envelopes of two adjacent compo-
lation index. Other methods based on the minimis-nents in the frequency domain (figure 14). These
ation of nonlinear functions by the simulatedenvelopes can then be used in order to ‘sculpt’
annealing or genetic algorithms have also beenanother sound (crossed synthesis). As we have
explored (Horner 1996). Attempts at direct esti-already mentioned, physical modelling is sometimes
mation of the FM parameters by extraction of fre-close to subtractive synthesis. This aspect will be

developed later. quency modulation laws from the phase of the

Figure 12. A whole set of envelopes of a violin sound, and the matrix showing the correlation between them. The dark
regions around the diagonal correspond to curves that look similar and that correspond to components that are close in
the frequency domain.



Modelling of natural sounds 189

Figure 13. Two main envelopes of the group additive synthesis model, with the spectrum of their associated waveform.
Psychoacoustic criteria can be used to generate a perceptively similar spectrum with nonlinear techniques.

Figure 14. Spectral envelope of a saxophone sound built from the additive synthesis parameters. This envelope can be used
to ‘sculpt’ the modulus of the Gabor transform of another sound in order to perform a crossed synthesis.

analytic signal related to the real sound have led to contact with it (Weinreich 1977). These source–res-
onator interactions are generally nonlinear and ofteninteresting results (Justice 1979, Delprat, Guillemain

and Kronland-Martinet 1990). difficult to model physically. However, a simple linear
waveguide model often gives satisfactory sound
results. In a general way, the study of linear wave

4.4. Waveguide propagation equations in a bounded medium shows
that the response to a transient excitation can be writ-The waveguide synthesis parameters are of a different

kind. They characterise both the medium where the ten as a sum of exponentially damped sine functions.
The inharmonicity is related to the dispersive charac-waves propagate and the way this medium is excited.

From a physical point of view, it is difficult to separ- teristics of the propagation medium, the decay times
are related to the dissipative characteristics of theate these two aspects: the air jet of a wind instrument

causes vortex sheddings interacting with the acoustic medium, and the amplitudes are related to the spec-
trum of the excitation. In the same way, the impulsepressure in the tube (Verge 1995); the piano hammer

modifies the characteristics of a string while it is in
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Figure 15. Parameter estimation for the waveguide model can be performed either from the solution of the partial differen-
tial equations of the string movement, or from the estimated damping factors and frequencies of the partials. Pictures on
the left show the data from the estimation. Pictures on the right show the data from the movement equation of a stiff
string. The figure shows, from top to bottom: modulus (related to losses during the propagation), phase derivative (related
to the dispersion law of the propagation medium) of the Fourier transform of the filter inside the loop, and impulse
response of the loop filter. The good agreement between theory and experimentation in this case can be used to fit mechan-
ical parameters of the string from the experimentation.

approximated by a sum of exponentially damped can be fed in order to resynthesise and shape a given
musical sound. Even though most musical sounds cansinusoids whose frequencies, amplitudes and damp-

ing rates are related in a simple way to the filter coef- be modelled from additive synthesis data, stochastic
or very noisy sounds still remain difficult to model.ficients (Ystad, Guillemain and Kronland-Martinet

1996). Thanks to the additive synthesis parameters Work is being conducted to fill this gap in order to
offer in the near future a genuine sound simulator toone can, for the percussive sound class, determine the

parameters of the waveguide model, and also recover musicians.
the physical parameters characterising the instrument
(Guillemain, Kronland-Martinet and Ystad 1997)
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