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ABSTRACT

This articles tackles the estimation of mode parameters in recorded impact sounds obtained by hitting
resonant objects. It is shown in this article that the ESPRIT algorithm can be efficiently applied on time-
frequency representations of the signal computed using Gabor frames. An experimental study on artificial
signals has been conducted in order to highlight the advantages of such an approach, and to compare the
performances of ESPRIT and Steiglitz-McBride-based estimation algorithm. A real case analysis situation

over a 341 impact sounds database is also discussed.

1. INTRODUCTION

The context of this study is the identification of acous-
tical modes which characterize a resonant object. This
is of great use when building an environmental sound
synthesizer (see [1] or [2] for an insight on such synthe-
sizers). Practically, the analysis is made from recorded
impact sounds, where the resonant object is hit by an-
other solid object (e.g. a hammer). Assuming that the
impact sound is approximately the acoustical impulse
response of the resonant object, and under the assump-
tion of small perturbations and linear elasticity, each
mode corresponds to an exponentially damped sinusoid
(EDS). The modal analysis thus consists of estimating
the parameters of each sinusoidal component (amplitude,
phase, frequency and damping). These parameters will
be stored, and eventually modified, before further re-
synthesis. In this paper, only the analysis part will be
considered.

In the past decades, significant advances have been made
in the field of system identification, especially for es-
timating EDS parameters in a background noise. The
involved analysis methods can be divided in three cate-
gories: short-time Fourier-like transforms methods [3],
resonant filter methods [4, 5] relying on the Steiglitz-
McBride algorithm [6], and high resolution methods like
Prony [7], MUSIC [8] or ESPRIT [9]. Among these three
high-resolution methods, ESPRIT has proven to have the
better efficiency [10, 11, 12], as well as offering a con-
venient direct estimation of the poles, whereas MUSIC
requires a scanning of all possible solutions. This pa-

per will therefore only consider the ESPRIT method in
the high-resolution family. In order to reduce the num-
ber of components to estimate and the computational
cost, a prior sub-band decomposition has already been
presented in [13] and [14], and has also been shown to
improve the estimation quality. This can also be com-
bined with a prior segmentation of the original signal
in the time domain as shown in [7]. The estimation of
the model order (i.e. the number of modes) is an im-
portant issue. Various methods have been proposed for
automatic estimation of the order, e.g. ESTER [15], or
[16] which relies on angle measures between subspaces.
However, in practical situations this parameter is often
deliberately over-estimated.

In this paper, the ESPRIT algorithm is applied on a time-
frequency representation of the original sound. The time-
frequency representation is here computed with a Gabor
transform (GT). Under certain conditions, the inverse
Gabor transform provides a perfect reconstruction of the
signal, although only the analysis part will be consid-
ered in this paper. The Gabor transform is equivalent to
a filter-bank, but offers a convenient formalism through
the concept of Gabor frame, which allows a straight-
forward time subsampling and sub-band division of the
time-frequency plane. The size of each sub-band and
the subsampling parameter depend on the choice of the
frame. Contrarily to other filter banks designed for ES-
PRIT in the past, the objective here is not to minimise
the overlap between adjacent channels. As a matter of
fact, impact sounds can have short durations and there-
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fore require a good resolution in time. For this purpose,
the energy spreading properties of the Gabor transform
as well as the flexibility offered by the concept of frame
is of great use. The transform being linear, an EDS in
the original sound is still an EDS inside each frequency
channel; ESPRIT can therefore be applied in each of
these channels, and a straightforward relation exists be-
tween the parameters in the time-frequency domain and
the sought parameters in the original time domain. As
opposed to the sub-band approach presented in [13], the
decimation here is not critical. Although the noise is no
longer white in such cases, it is shown through numer-
ical experiments that better estimations can be achieved
than with critical sub-sampling. A method relying on
psychoacoustical considerations to discard insignificant
modes a posteriori is also proposed.

The paper is organised as follows: first, a brief state-of-
the-art covers the signal model, the ESPRIT algorithm
and the Gabor transform. Then, it is shown that original
EDS parameters can be recovered by applying the ES-
PRIT algorithm in each frequency channel of the Gabor
transform. The next part describes numerical tests that
have been conducted in order to study the behaviour of
ESPRIT compared to the Steiglitz-McBride algorithm.
Then, the results of a database analysis (consisting of
341 impact sounds) with different methods are presented.
Further possible improvements are finally discussed.

2. STATE OF THE ART

2.1. The signal model and the ESPRIT algo-
rithm

It is considered that the discrete signal to be analysed can
be correctly modelled by:

x[1] = s[{]+w[] (1)

where the deterministic part s[/] is a sum of K damped
sinusoids:

K—1
s[l] =), &z Q)
k=0

Here the complex amplitudes are defined as oy = ay e'%
(containing the initial amplitude a; and the phase ¢y),
and the poles are defined as zx = e~%*2™V% (containing
the damping d; and the frequency V). The stochastic
part w[l] is a central gaussian white noise of variance
o’

The ESPRIT algorithm was originally described by Roy
et. al. [9]. The principle consists in performing a

singular value decomposition (SVD) on an estimate of
the signal correlation matrix. The eigenvectors corre-
sponding to the K highest eigenvalues generate the so
called signal subspace, while the remaining vectors gen-
erate the so called noise subspace. The shift invariance
property of the signal subspace, which basically means
that for any component s; and at all times / one has
se(l+1)/sx(I) = z, allows a simple solution for estimat-
ing the optimal poles values z;. Then, the amplitudes o
can be recovered by solving a least square problem. The
algorithm can be described briefly as follows:

The signal vector is defined as:
z=[0] A[1] .. AL-1]", B

where L is the length of the signal to be analysed. The
Hankel signal matrix is defined as:

x[(l)] x[;] x[0—1]
o AR e
AR—1] [R] AL—1],

where Q,R > K and Q+ R —1 = L. The amplitude vector
is defined as:
a=[a a ax— |", (5)

and the Vandermonde matrix of the poles:

1 1 1
. 20 2 . ZR—1
Z" = : : : : : (6)
-1 -1 Lo
20 21 k-1 |

Performing a SVD on X leads to:

o=

0 22 ‘/2 | ) (7)

X = [U,Us] [

where ¥ and 3, are diagonal matrices containing re-
spectively the K largest singular values, and the smallest
singular values; [U3 Uz] and [V V2] are respectively the
corresponding left and right singular vectors. Using the
shift-invariance property of the signal subspace, it can be
proved that the eigenvalues of the matrices ®; and ®,
defined such that:

Ui® =U and V'@, =V/ (8)
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provide estimation of the poles z;. (.)" and (.)! respec-
tively stand for the operators discarding the first line and
the last line of a matrix. Thus, z; can be estimated by
diagonalizing the matrix ®; or ®,. The associated Van-
dermonde matrix Z* is then computed, and the optimal
amplitudes with respect to the least square criterion are
finally obtained by:

a=(ZY e, )]

where (.)" denotes the pseudoinverse operator.

2.2. The Gabor Transform

The Gabor transform allows the expression of x[/] in a
given Gabor frame. A Gabor frame {g,a,M} is char-
acterised by a window g, a time-step parameter a, and
a number of frequency channels M. The expression
x[m,n] of x[] in the Gabor frame {g,a, M} is written:

L—1
xm.n] =" gll —an]x[[]e 2™, (10)
=0

where (.) denotes the complex conjugate. m is a discrete
frequency index and » a discrete time-index. One can see
that this corresponds to a discretised version of the stan-
dard short-time Fourier transform. This transform can
generally be inverted (for more details, see for instance
[17]). The signal x[m,n] for a fixed index m can be seen
as a sub-sampled and band-pass filtered version of the
signal x[1]. As the sub-sampling reduces the length of the
data by a factor a, the ESPRIT algorithm can be applied
to each frequency channel in order to analyse longer sig-
nals.

3. ESPRITIN A GABOR FRAME

This section covers the application of the ESPRIT algo-
rithm to a single channel in a Gabor frame. The analysed
signals are therefore composed of the GT coefficients at
a given frequency index m. As the GT is linear, the con-
tribution of the deterministic part s[/] can be separated
from the contribution of the noise w[/].

3.1. Deterministic part

c[m,n] denotes the GT of s[/] in channel m and time in-
dex n, whereas ci[m,n] denotes the GT of the signal z
associated to the pole z;:

L1
ck[m,n] = Z [l — an]zk e ¥™it (11)
1=0

According to the signal model (2), it can be easily proved
that:

K—1
c[mn] = GmZi (12)
k=0
where the apparent pole Zx ,, can be written as:
Zem = 2 €2 (13)
and the apparent amplitude:
dk,m = O ck[m,O]. (14)

In other words, the deterministic part of the signal in
each channel is still a sum of exponentially damped sinu-
soids. However, their poles and amplitudes are modified
according to the Gabor frame time-step and frequency
parameters.

3.2. Stochastic part

It has been proved that the Gabor transform of a gaussian
noise is a 2D complex gaussian noise [18]. However,
the noise is white only if the decimation factor is critical
(M/a = 2). When it is not, the noise in each channel is
a white noise filtered by a low-pass filter (see appendix
8.1). Resulting noise power spectrum are displayed Fig.6
for different values of M/a. When M /a # 2, the white-
ness hypothesis under which the ESPRIT method is valid
is no longer fulfilled. In spite of that, experimental results
indicate that pole estimations are still valid, and achieved
with an even better resolution than when the decimation
is critical. In order to explain this, two facts can be high-
lighted:

1. The more samples are considered when the signal
is significantly above the noise level, the better the
estimation. This condition is favoured for low a val-
ues (see Fig. 5).

2. The noise level in the neighbourhood of the compo-
nent to be analysed has more influence on the es-
timation error than the overall noise spectral shape
(see Fig. 7), on which depends the whiteness condi-
tion.

The corresponding experiments are deeply commented
in section 4.

3.3. Recovering the signal parameters
Assuming that the signal model is still valid, or that its
divergence from the theoretical model is negligible, it is
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reasonable to apply ESPRIT on c¢[m,n]. ¢, denotes the
vector of GT coefficients in the channel m and S,, the
Hankel matrix built from c[m,n]. Applying the ESPRIT
algorithm to S, leads to the estimation of the apparent
poles Zi . Inverting equation (13) leads to:
_ 2imm . 1

2k ="M (Zm)a (15)
Because of the sub-sampling introduced by the GT, it
can be seen from equation (13) that aliasing will oc-
cur when the frequency of a pole is outside the interval
[% - i, u+ ﬁ] To avoid aliasing, a and and the anal-
ysis window g[/] must be such that the bandwidth of g[/]
is smaller than é That way, the possible aliasing com-
ponents will be attenuated by the band-pass effect of the
Gabor transform.

Denoting ZY the Vandermonde matrix of the apparent
poles Zi,, (N is the time-length of signal c[m,n]), the
least square method for estimating the amplitudes leads
to:
(Zr]r\l, )Tcm
= Zm/ 16
7 afm,0] (e

Without noise, according to equation (12), every EDS
should be detected in each channel, which generates mul-
tiple estimations of the same modes. Theoretically, the
model order should be set to K in each channel. How-
ever, this is usually a large over-estimation. Because
each channel of the GT behaves like a band-pass filter,
an EDS with a frequency far from 7 will be attenuated
and buried in the noise. Thus practically, the optimal
model order has to be chosen for each channel on which
the analysis is performed. It can be determined using the
ESTER criterion [15], or deliberately over-estimated.

3.4. Choice of the analysis channels

All channels of the Gabor transform are not likely to
contain energy relative to a vibration mode. In order to
diminish the computational time as well as the number
of components obtained in the end of the analysis, it is
useful only to perform the analysis on channels in which
deterministic energy is likely to be found. This choice
can be made “by hand”, observing the Fourier transform
or the spectrogram. Or, assuming that the determinis-
tic energy is clearly above the noise level, the channels
containing one ore several partials will exhibit an energy
peak compared to their neighbours. A peak detection al-
gorithm can therefore be applied on the energy of the
Gabor transform channels (see Fig.2-b).

- Absolute detection threshold 4

Level (dB SPL)

102 103 104
Frequency

Fig. 1: Illustration of the masking phenomenon consid-
ered in the analysis protocol. The dashed line models
the absolute detection level of the human hearing, and
the grey area correponds to the masking domain of the
component represented by a white dot.

3.5. Discarding multiple components

If the distance between a set of channels on which an
analysis has been performed is smaller than the band-
width of the analysis window g[/], the same components
are likely to appear in all of these channels. These multi-
ple estimations of the same component (hereafter named
replicas) have to be identified. The only one that will be
kept for the final re-synthesis is the one which frequency
is the closest to the central frequency of the channel
where it has been detected, for this is where the signal-to-
noise ratio is optimal and therefore where the estimation
is likely to have the lowest error. A component ¢, (with
frequency f,) is considered a replica of a component ¢,
(with frequency f,) if the following conditions are ful-
filled:

lfr=fol < & (17)
|fr_fo| < |f0_fi| (18)

Here &; is a frequency confidence interval and f; is the
closest frequency to f, among the components detected
in the same channel as c,.

3.6. Discarding irrelevant components

Practical tests have shown that some of the modes de-
tected using the previously described approach are not
relevant for they have an insignificant energy. What’s
more, the only components of interest for the given pur-
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pose are the one that can be heard by a potential lis-
tener. It is therefore possible to rely on psychoacous-
tical considerations to discard components. To do so,
two phenomenons can be taken into account : the ab-
solute detection threshold of the human hearing system,
and the masking of a component by another. For station-
ary sounds, these masking processes have been deeply
described, and convincingly approximated by analytical
laws exposed in the following sections 3.6.1 and 3.6.2.
For non-stationary sounds such as damped sinusoids, no
straightforward masking description has been proposed.
However they can be considered as a succession of sta-
tionary processes, on which the pre-mentioned masking
phenomenon can be applied. This last point is considered
in section 3.6.3.

3.6.1. The absolute masking threshold
The absolute threshold level in dB can be estimated
(see [19]) by :

364708 —6.50 06U 337 L1073 (19)

Where fiy is the frequency in kHz. When dealing with
recorded sounds, the output level is a priori unknown.
Therefore the function is usually modified so that its
minimum matches the minimum encodable value in the
considered audio format (for instance 20log;y(1) = 0,
in wav format encoded as 16 bits integers). The corre-
sponding function is plotted Fig.1.

3.6.2. Masking of a component by another
This phenomenon occurs when a sinusoid (the masker)
reduces the perceived loudness of another component
of smaller amplitude (the masked) to the point that it
becomes undetectable by the human auditory system.
In [20], the masking threshold generated by a masker si-
nusoid is expressed as a function of its amplitude and
frequency. It is modelled by two slopes which are
linear when the energy is in dB and the frequency in
barks: a 18 dB/bark slope for lower frequencies, and a
—22 dB/bark for higher frequencies. A masking offset
of —4 dB from the masker amplitude is also assumed.
Finally, the masking domain in frequency corresponds to
the critical band associated to the masker (see Fig.1).

3.6.3. Masking between damped sinusoids

A damped sinusoid can be considered as a sinusoid
which amplitude varies continuously with time. Under
the assumption that the variation is small enough, it can
therefore be approximated by a succession of sinusoids
which amplitude is constant over a given duration A,.

Doing so, one approximates the EDS model into another
one which is compatible with the aforementioned mask-
ing phenomenons. For all constant-amplitude portions
of the approximating signal, is is firstly determined for
each component whether it is above or below the abso-
lute detection threshold ; secondly the masking domain
of each component is computed. After each computa-
tion, other components which may fall into the masking
domain are labelled. Once this has been done for each
signal portion, the components which are always below
the detection threshold are discarded, as well as the com-
ponents which are labelled as masked for every portion
in which they are above the detection threshold.

Is is legitimate to wonder about the pertinence of such
an approximation of masking processes. Unfortunately,
no psychoacoustical model describing masking between
damped sinusoids has been proposed yet. Two sensible
points can be highlighted : first, the one-to-one (masker-
masked) relation between components considered here
is a very simplified scenario. In reality, a single mask
can be formed by a masking effects addition of several
different components (see [21] for a description of this
phenomenon); here the additivity of masking effects has
not been considered. Secondly, the constant amplitude
approximation in the time domain is equivalent to a peak
approximation in the frequency domain. In reality the
components have a wider bandwidth due to their damp-
ing (see Fig.3.4 in [22] for a clear illustration of mask-
ing pattern widening). A masker component is therefore
likely to have a wider masking range, and a masked com-
ponent is likely to stick out of a hypothetical masking
domain wherein its peak approximation is confined.

3.7. lllustration

As an application, one can observe Fig.2-a the spec-
trogram of sound that has been analysed with the afore-
mentioned method. The ESPRIT algorithm has been ap-
plied on each of its Gabor transform channels determined
by a peak detection algorithm (see section 3.4) and dis-
played as white dots Fig.2-b. The analysis order was
over-estimated to 6 in each of these channels. This led
to 780 components, of which 176 presented a negative
damping, and had to be discarded before resynthesis in
order to avoid diverging signals. The resynthesis spec-
trogram is displayed Fig.2-c. The spectrogram Fig.2-d
corresponds to the resynthesis after discarding the irrele-
vant components as described in section 3.6.

The corresponding sounds can be listened to at ??. One
can notice the perceptual quality of the resynthesis, as
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Fig. 2: Analysis of a sound which spectrogram is displayed on the plot . The ESPRIT algorithm is applied on each
of the bin displayed as white dots plot b, with an order forced to 6. The corresponding resynthesis containg 604
components is displayed plot c. After discarding unheard components as described in section 3.6, only 57 components
remain. The corresponding resynthesis spectrogram is displayed on plot d.

well as the low impact that the psychoacoustical discard-
ing procedure has on the final rendering; as a matter of
fact, no difference at all can be noticed. The noisy back-
ground of both resynthesis spectrograms is only a quan-
tification artefact due to the 16 bits integers data format
that was used.

4. NUMERICAL TESTS

Here are described some numerical tests that have
been conducted to observe the behaviour of the ES-
PRIT method and the Steiglitz-McBride algorithm in
controlled conditions. The two methods were studied in
the full-band case only, in order to highlight their inner
characteristics and not to take into account any prepro-
cessing effect. The tests mainly consist in the observa-
tion of the poles estimation errors as experimental con-
ditions evolve. The amplitudes have not been considered

here, since their estimation relies on the pole estimation,
and only consist in a least-square method.

4.1. Robustness to noise

Strictly speaking, a signal-to-noise ratio is the ratio be-
tween the signal and noise powers. In the case of impact
sounds following the EDS model, this value evolves in
time. The estimation quality is not entirely determined
by the SNR. As exposed in section 4.3, the number of
samples for which the signal amplitude is above the noise
standard deviation is of great influence as well. It has
therefore been chosen here to display the results of the
experiments directly in function of the noise variance.

The deterministic part of the analysed signal was a
damped sinusoid of frequency 100 Hz, damping 40 s,
amplitude 1 and length 2500 samples. The mean error
on damping and frequency has been computed for 100
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Fig. 3: Robustness to increasing noise variance, for a
damped sinusoid with an initial amplitude equal to 1, a
frequency of 1000 Hz and a damping of 40 s~!. For each
variance, 100 estimations have been conducted.

estimations at different values of the noise variance, and
the results are displayed Fig.3.

From a null variance up until a variance of 0.05, the
two methods provide similar errors, or slightly better
for Steiglitz-McBride. Beyond, aberrant estimations dra-
matically modify the mean and standard deviation of
the Steiglitz-McBride estimations, whereas the ESPRIT
method still provides accurate results.

4.2. Resolution limits

Some impacts sounds present a high density of modes;
this is typically the case for metallic sounds. In such a
situation, each canal of the Gabor transform may con-
tain many partials. As it will be shown in the following
section, this diminishes the estimation precision of the
method. On Fig.4, one can compare the error committed
on the pole estimation as the modal density increases for
two methods: ESPRIT and a standard Steiglitz-McBride
algorithm which estimates the coefficients of an ARMA
filter such as proposed in [4]. The analysed signals
consisted in an increasing number of damped sinusoids,
which frequencies were randomly distributed between
2000 and 2200 Hz. Their amplitudes were arbitrarily set
to 100, and their dampings to 40 s~!.

For both methods, two observations can be made: first,
the frequency error estimation increases as the number
of components gets higher. Secondly, there is a maxi-
mum number of components (different for each method)
that can be “correctly” estimated. “Correctly” meaning
here an estimation for which the frequency and damping
errors are below 1 Hz!. Globally the ESPRIT method
exhibits smaller frequency error estimations as well as a
higher number of components which can be correctly es-
timated. One can also notice that the Steiglitz-McBride
results regroup in two scenarios: either all components
are correctly estimated, or no component is correctly es-
timated at all. With ESPRIT, however, even when all
components are not correctly estimated, some still are.
Comparing the left figure for which the analysed sig-
nal were made of 1500 samples with the right figure for
which 4500 samples were analysed, one can notice how
the estimation quality of ESPRIT increases for a large
number of samples, whereas this augmentation does not
affect the estimation quality of the Steiglitz-McBride ap-
proach: the number of correctly estimated components
goes from 6 to 16 with ESPRIT, while it sticks to 3 with
Steiglitz-McBride?. As the computational possibilities
will grow in the future, the ESPRIT method resolution
will get better and better, since it will become possible to
analyse longer signals.

4.3. Influence of the analysis horizon

The experiment described here is meant to observe the
behaviour of the ESPRIT method as the number of anal-
ysed samples changes. This is of matter of importance in
practical situations, since the length of the signal directly
conditions the computational complexity of the problem,
and therefore the computational time. The first experi-
ment, which results are displayed Fig. 5, shows the evo-
lution of the mean error of 100 estimations as the analysis
horizon is progressively extended from the beginning of
the signal. The analysed signal consisted in a damped
sinusoid of frequency 400 Hz, with a damping of 60 s~ !
and an amplitude of 1, to which was added a gaussian
white noise of variance 10™*. One can observe that the
estimation resolution increases with the analysed length,

!"This value has been arbitrarily chosen for the purposes of the anal-
ysis comparison.

2This explains the different conclusion than the one obtained in
[23], where the Steiglitz-McBride estimations were shown to be more
accurate: possibly because of the computational limitations at that time,
ESPRIT was applied on only 295 samples. With the nowadays com-
puters, longer signals can be analysed, and the ESPRIT performances
have greatly improved.
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Fig. 4: Comparison of the estimations between ESPRIT and Steiglitz-McBride, for an increasing number of compo-
nents randomly distributed between 2000 and 2200 Hz, with a random phase, an amplitude of 100, and a damping of
40571, N'Cf is the number of frequency estimations with an error inferior to 1 Hz, and N‘Cf “ the number of estimations

with an error below 1 for both damping and frequency.

up until a threshold which is roughly the effective signal
length, i.e. the number of samples for which the deter-
ministic part of the signal is significantly above the noise
level. Hence the more samples significantly above the
noise level are available for the analysis, the better the
estimation will be.

4.4. Influence of noise spectral density shape

The section describes numerical experiments meant to
determine the influence of a non-white noise on the esti-
mation. They were motivated by the fact that usually, the
Gabor transform of a white noise is not a white noise in
a given channel. In fact, the spectral density of the noise
in a given frequency channel is equal to the square of the
window g Fourier transform subsampled , up to a multi-
plicative constant that depends on the noise variance and
the time subsampling parameter a (see 8.1). As an il-
lustration, three power spectra of a white noise Gabor
transform are presented Fig. 6, for different ratios M/a.
One can observe that the resulting noise is white for a
ratio M/a = 2. The experiments described in this section
consisted in the estimation of a damped sinusoid of fre-
quency 21 Hz, damping 10 s~!, initial amplitude 1 and

composed of 2500 samples, added to a background noise
corresponding to different M /a ratios varying from 2 to
256. The subsampling operation having an influence on
the global noise energy, it has to be normalised in order to
isolate the effect of the noise shape only. Three different
noise energy normalisations have been considered. One
on the whole spectrum, ensuring that his global energy is
0.1. The second is a normalisation to 0.1 over the “win-
dow frequency support”, defined here as the frequency
range over which the first prominent lobe of the window
Fourier transform is higher than the second prominent
lobe. The third normalisation is made over the “compo-
nent frequency support”, defined as the frequency range
centred around the component frequency which contains
95% of the total component energy. One can see Fig.7,
that the estimation error increases as the noise is less and
less white (i.e for a growing M/a factor), in the over-
all normalisation case only. For the two other “local”
normalisations, the noise power spectrum shape has no
influence on the estimation quality. From this it can be
deduced that the relevant measure for the estimation pre-
cision is the level of the noise in the neighbourhood of
the component frequency, and that the global shape of
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Fig. 5: Evolution of the error mean on 100 realisations
as the number of analysed samples evolves. The dashed
line corresponds to the number of samples beyond which
the component amplitude is below the standard deviation
of the background white noise.

the noise has little or no influence at all on the estimation
error. This fact comforts the idea that applying ESPRIT
over a Gabor transform frequency channel can lead to
satisfactory estimations, although the whiteness condi-
tion on the background noise is not satisfied.

5. COMPARISON ON RECORDED SOUNDS

The objective here was to compare the global effective-
ness of different methods that can be used to decompose
a sound as a sum of damped sinusoids. To do so, the
resynthesis corresponding to each method is compared
to the original sound. The available sound database con-
sisted in 341 sounds recorded in an anechoic room by
hitting different objects of the everyday life. 5 analysis
methods have been studied. 3 full-band methods, and 2
sub-band methods. The full-band methods consisted in:

o Steiglitz-McBride (STMCB)

e ESPRIT in full-band with the maximum order (ESP
MAX)

e ESPRIT with an ESTER-derived order criteria (ESP
ESTER)

The maximum order for the full-band ESPRIT analysis is
defined as the number of audio samples available divided
by 4 (in terms of real components). The ESTER-derived
criteria sets the order to the maximum order for which
the ESTER cost function is above a fifth of its maximum
value. The Steiglitz-McBride algorithm has been applied
for 100, 200, 300 and 400 poles. This choice is motivated
by the fact that depending on the analysed sound, there
is a maximum order above which the Steiglitz-McBride
algorithm does not converge. This order is typically be-
tween 200 and 300. The best resynthesis was then au-
tomatically chosen for comparison with other methods.
In order to limit the computational time, the maximal
analysable length was limited to 2'4.

The considered sub-band methods are:

e FZARMA
e ESPRIT in a Gabor transform (ESP GABOR)

FZARMA (Frequency-Zooming ARMA, [4]) is an anal-
ysis methods that combines a “frequency zooming” pro-
cedure with the Steiglitz-McBride algorithm. The fre-
quency zooming consists in a band-pass filtering of the
original signal followed by a decimation, around each
of the frequency range of interest (typically each of the
partials). For both analysis methods, FZARMA and ES-
PRIT, the order has been forced to 6 in each sub-band.
The Gabor frame consisted in a blackman-harris window
of length 2048, a number of channels M = 2048 and a
time-step parameter a = 32.

In all cases, the components with a negative damping
were discarded prior to resynthesis. All other compo-
nents were kept. As a measure of dissimilarity between
sounds, the Itakura-Saito divergence (ISD) has been cho-
sen, as defined in [24]. See Appendix 8.2 for a for-
mal definition. The psychoacoustical discarding proce-
dure described in section 3.6 has not been applied before
resynthesis, since it prevents an objective comparison of
the original sounds with their corresponding resynthesis.
As a matter of fact, discarding a masked component in
a resynthesis might have no effect at all from the per-
ceptual point of view, but it will modify the sound spec-
trum and therefore the Itakura-Saito divergence, which
will skew the comparison interpretation.

The results are displayed Fig.8, and the mean diver-
gences for the different methods Table 1. In the fol-
lowing, an analysis is considered “correct”, if its corre-
sponding Itakura-Saito distance is below 10. It shows
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Fig. 6: Power spectrum of a white noise through a single Gabor transform channel, for different M/a ratios. As M/a
tends toward 2, the underlying noise tends toward a white noise.

Method ISD | Correct analysis | N,
ESP MAX 0.94 83.97 % 3302
ESP GABOR | 2.24 98.24 % 193
FZARMA 2.33 95.01 % 193
ESPESTER | 4.12 55.72 % 65
STMCB 4.12 33.43 % 229

Table 1: Statistics on the 341 impact sounds database.
ISD stands for the mean Itakura-Saito divergence. The
“Correct analysis” are defined as the ones for which the
Itakura-Saito divergence is below 10. N, denotes the
mean number of components (rounded to the closest in-
teger) used for resynthesis for each sound.

that ESPRIT in Gabor frames offers the best reliability
(98 % of correctly analysed signals), closely followed by
the FZARMA method (95 % of correctly analysed sig-
nals). Among all methods, ESPRIT in full-band with a
maximum order analysis provides the resynthesis clos-
est to the originals, although only 84 % of the signals
were correctly synthesised. Furthermore, the number of
components used for the ESPRIT full-band resynthesis
is much higer than with the other methods. Full-band
ESPRIT with an ESTER determined order led to a cor-
rect analysis in 56 % of the cases, whereas only 33 % of
the sounds were correctly synthesised using the Steiglitz-
McBride algorithm.

6. CONCLUSION
It has been shown that ESPRIT can be applied on time-

frequency representations and that it constitutes a reli-
able way to describe signals as a sum of damped sinu-
soids. This has been clearly highlighted by numerical
experiments, as well as a real case analysis-synthesis
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Fig. 7: Mean error over 1000 pole estimations of an ex-
ponentially damped sinusoid of frequency 21 Hz, damp-
ing 10 s~! and amplitude 1, to which was added a noise
corresponding to various M /a ratios.
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10 intervals for the whole sound database and the 5 tested
methods.

comparison with other existing methods. The ESPRIT
method applied on the full-band signal provided the best
estimations. It has to be noted, however, that this comes
at the expense of:

e reliability, since the method seems more likely to
give diverging results;

e sparsity, since the order is greatly over-estimated;

e computational cost, since the signal has to be anal-
ysed on a relatively large number of samples in or-
der to be correctly synthesized.

The computational costs of the different methods have
not been considered in the paper, but is has to be
pointed out that the FZARMA [4] method, which pro-
vided slightly less precise estimations than ESPRIT in
Gabor frames, is generally much faster. According to the
application, it can appear sometimes more suitable. Both
methods have the benefits of the sub-band analysis: an
extension of the analysis horizon, and a diminution of the
complexity by only considering successive regions in the
frequency domain; this appears to be a key-reason for the
quality of the estimations that they provide and for their
relative sparsity compared to the full-band methods. On
top of that, the information given by the time-frequency
representation is of great use for targeting the analysis
on the time-frequency intervals that contain the desired
information. Combined with a selection of the most im-
portant components based on psychoacoustical consider-

ations, the proposed method constitute an adapted tool
for the analysis-synthesis of impact sounds.
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8. APPENDICES

8.1. A white noise through a Gabor transform
channel

Given w[l] a white noise of variance 62. The (m+1)-th
channel of its Gabor transform c,, ,[n] is:

L—1
cwmln] = Z wll]3[l —an] e~ 27!, (20)
=0

which is a a-sub-sampled version of the convolution
product between g inverted in time, and the modulated
noise hereafter denoted w[/]:

cunln] = {(wle¥ i) 5 g[-1} [an] @D)
= {Wll] * g[-I]} [an] (22)
where * stands for the convolution operator.
Let Z#(.) denote the Fourier transform operator. A sub-
sampling in time induces an over-sampling in frequency
according to the relation:

F ) ()= F el (S) @

1
a
for any x for which % (x) exists. Since w[l] is a white
noise, % (W[l]) = .% (w[l]). Futhermore, .# (g[—I]) =
Z (g[I]). The Fourier transform of a convolution product
being the product of the Fourier transforms, one finally
has:

1 _
F(ewn) = {F W F@flan] 4
Therefore, the power spectrum of ¢y, ,[1] is:

_ 0

|‘gz(cw,m)|2 g|f(g)|2 (25)
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Usually, % (g) corresponds to the frequency response of
a low-pass filter, as it can be seen Fig.6 in the case of a
blackman-harris window.

8.2. The Itakura-Saito divergence
Given two signals x; and x; with their respective Gabor
transforms being c¢;[m,n] and ¢;[m,n] of size M x N, let
m; ; be the point-wise ratio between the two transforms
defined as:

cifm,n] + A

cj[m,n] +A (26)

m; ;=
with A a regularisation term preventing divergence dur-
ing the computations. The non-symmetrical Itakura-
Saito divergence between x; and x; is defined as:

1
dij= FNZ |m; jm,n]| —log|my j[m,n]|—1 (27)

m,n

Notice that d; ; is actually equal to O when ¢; = ¢;, but
that usually d; ; # d;;. A symmetrical version of the
Itakura-Saito divergence is therefore defined as:

. . 1
iy =dj" =5 (dij+dj), (28)

iJ

and is the one used in the paper.
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