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Introduction

The wavelet transform is a recent method of signal
analysis and synthesis (Grossmann and Morlet
1984; Grossmann et al. 1987). It analyzes signals in
terms of wavelets—functions limited both in the
time and the frequency domain. In comparison, the
classical Fourier analysis method analyzes signals
in terms of sine and cosine wave components that
are not limited in time.

The wavelet transform is related to granular
analysis/synthesis, first suggested by Gabor (1946).
Granular synthesis has been implemented by Roads
(1978) and Truax (1988). Rodet (1985) and Liénard
(1984) use adapted grains for speech signals; how-
ever, these implementations do not attempt to re-
construct an arbitrary given signal.

The Gabor method uses an expansion of a func-
tion into a two-parameter family of elementary
wavelets that are obtained from one basic wavelet
by shifts in the time variable and in the frequency
variable (Fig. 1a). The practical limitation of this
procedure can be seen in the case where one of the
signals to be analyzed is a short, high-frequency
transient. In this case, in the process of reconstruc-
tion, it is necessary to sum over many terms of rap-
idly varying phase. This leads to instability in the
numerical computations.

The wavelet transform uses a related but differ-
ent procedure. It decomposes an arbitrary function

Editor’s note: A soundsheet with audio examples of the wavelet
transform will appear in the next issue, Volume 13, Number 1,
Spring 1989.
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again into a two-parameter family of elementary
wavelets that are obtained by shifts in the time
variable but also by dilations (or compressions) that
act both on the time and the frequency variables
(Fig. 1b). So, contrary to the Gabor method, the
number of cycles does not change. Thus the new
method is easier to implement; it permits a better
convergence of the reconstruction formulas.

What Is an Analyzing Wavelet?

We have great latitude in the choice of the analyz-
ing wavelet used for analysis. However, it cannot be
completely arbitrary and the conditions to be ful-
filled are mathematically well-defined (Grossmann
and Morlet 1984).

Let g(t) be an analyzing wavelet. The require-
ments are as follows:

(i) g(t)is absolutely integratible and square inte-
gratible (the latter condition means it has a finite
energy):

[ls(t) dt < and [lstelz de <. 1)

(ii) If ¢(w) represents the Fourier transform of
g(t), then

[lgto)P/o do < =. 2)

In practice, this requires that g(t) have zero mean
value (no DC bias): ¢(0) = 0 or [g(t) dt = 0.

In the case of speech and music-sound analysis, it
is convenient to extract from the analysis some in-
formation about the energy distribution and phase
behavior in the wavelet transform representa-
tion. This can easily be done by using a complex-
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for the wavelet transform
in the time-dilation do-
main (b). The number of
cycles does not change.

Fig. 1. Elementary wave-
lets used for the Gabor ex-
pansion in the time-
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(iii) g(t) contains only positive frequency compo-
nents. (o) = 0 for w < 0. So the real and imaginary
parts of g(t) are the Hilbert transform of each other.

These are the minima requirements that g(t) has
to satisfy in order to be an analyzing wavelet. In
practice, one often also requires a concentration of
g(t) and g(w) not too far from the limit imposed by
the uncertainty principle. As an example, the wave-
let used for the computation of the numerical ex-
amples below is Fig. 2

$lw) = K- exp(—(w — wo)*/2)
+ small corrections. (3)

The small corrections are numerically negligible
but ensure that g(t) satisfies the formal conditions
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for an analyzing wavelet. The corresponding time
expression of the analyzing wavelet is

g(t) = C - exp(—t2/2) - expli w, t). (4)

The Wavelet Transform

Now, consider an analyzing wavelet. We want to ex-
pand an arbitrary signal into contributions that all
have the same shape as our wavelet. We obtain
these contributions by shifts and dilations of the
original wavelet.

Let g(t) be the analyzing wavelet, a the dila-
tion parameter (a > 0) and b the shift parameter.
We define a two-parameter family of wavelets
Z.»(t), which can be mapped on a shift-dilation
plane (Fig. 1b):

g.5(t) = gl{t — b)/a).

The wavelet transform of an arbitrary signal s(t)
is now defined on every point (b, a) in the shift-
dilation plane. Just take the associated wavelet
g.»(t), then do the scalar product of g,,(t) with the
signal. The wavelet transform is a complex-valued
function in our case, since the wavelet is complex-
valued.

So the wavelet transform of the signal s(t), with
respect to the wavelet g(t), is the function S(b, a)
on the shift-dilation plane defined by
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Fig. 3. Sampling grid in the
time-dilation domain.
This grid allows an arbi-
trarily precise reconstruc-
tion of the signal.
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(the bar denotes the complex conjugate). (5)

An important point is the ability to reconstruct
the signal s(t) from its transform S(b, a). Actually,
there is no loss of information when we go from
the wavelet transform to the resynthesized signal.
An exact reconstruction formula is given by

s(t) = (/e ) [ [ 11/Va) glit = bl/a) S(b, a) (1/a”
(c, is a constant depending only on the wavelet
g chosen).

There exist many other formulas for resynthesis.
An important one, as we shall see in the next sec-
tion, only needs a simple integration (summation)
of the coefficients:

s(t) = K, [ Slt,a) (1/a%") da. (7)

These formulas involve the values of the wavelet
transform on a continuous plane (b, a). The mathe-
matics also give important practical results con-
cerning the possibility of discretization, replacing
the integration by a discrete summation and the
storage of the transform. Other reconstruction for-
mulas exist that involve only the values of S(b, a)
on a suitable discrete grid (Fig. 3).

Fig. 4. Response of a bank
of filters corresponding to
dilated wavelets. The ra-

tion 8f/f does not change.
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The Wavelet Transform and Hearing

If one uses a wavelet similar to that shown in Fig. 2a,
then the analysis process is somewhat similar to
the analysis performed by hearing. This analogy de-
rives from the fact that the wavelet transform per-
forms an analysis with 8f/f constant, which is re-
lated to the analysis done by the auditory system.
Of course, the condition is that the analyzing wave-
let used looks like the response at a particular point
on the basilar membrane to a short impulse, or
more simply that 8f/f = 1/3. (The critical band of
the ear is about 1/3 octave in the middle range.)

Figure 4 shows the responses of a bank of filters
corresponding to the wavelet family g,,(t) with
a = 27 (one filter per octave).

The frequency selectivity of these filters is better
for low frequencies; their time selectivity is bet-
ter for high frequencies. These characteristics allow
us, for instance, to see beats on frequency compo-
nents when they occur in the audio range. (Figs. 5
and 6).

Implementation of the Wavelet Transform

The method just described has been implemented
with the real-time signal processor SYTER, de-
signed by J. F. Allouis at INA-GRM and built by
Digilog (Allouis and Mailliard 1981). This system
consists of a host processor (DEC PDP-11/73) and a
real-time signal processor (Fig. 7) that can calculate
the wavelet transform by using a digital transverse
filter (Fig. 8). The system allows also the reconstruc-
tion of signals from their transform with the possi-
bility of performing modifications by altering the
parameters after analysis and before resynthesis.
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Fig. 5. Modulus of the
wavelet transform of a
two-frequency signal.
Since the two components
are far from each other, no
interference occurs.

Fig. 5
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Fig. 6. The same as Fig. 5
with an inharmonic fre-
quency ratio. One sees the
interferences correspond-
ing to beats for hearing.

Fig. 6
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Fig. 7. Schematic descrip-
tion of the SYTER
processor.
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Fig. 8. Structure of the
transverse filter used for
wavelet transformation.

x(n)

N-1
yln) = 3 g xln—1-1)

The discrete convolution described in Eq. 5 is
X(n)=2gSn—-1-1, (8)

where X(n) is the nth output sample, g; the ith
value of the wavelet, and S(n) the nth sample of the
input signal.

For any value of the dilation parameter a (for
each “voice”), the host processor calculates the
sample values g,(n) of the analyzing wavelet, and
transmits them to the real-time signal processor,
which then performs the transform in real time for
each voice.

This algorithm can be hard to implement in real
time if the analyzing wavelet is defined over a large
number of sampled values (due to dilation). For
some classes of wavelets, it is possible to compute
the convolution with a fixed number of points for
each octave by using a preliminary transverse filter
acting on the signal (Holschneider et al. 1988). In
general, this filter needs three or four nonzero co-
efficients. A diagram of this algorithm is given in
Fig. 9. Here G, and F, represent respectively the
discrete wavelet and the initial discrete impulse
response of the filter. G, and E, are defined recur-
sively from G,_; and F,_, by added zeros between
each point.

A Look at Some Results

In this section, we present the first applications of
a method to visualize characteristic features (the
“acoustic signature”) and to resynthesize and pro-

Fig. 9. Schematic descrip-
tion of a real-time al-
gorithm used for wavelet

transformation.
S(t)
> G, > v,
L FO Gl ' V?.a
FI L w G 2 o V4a
—» E_, ¥ G, Von,

cess speech and musical sounds, using a wavelet
similar to that of Fig. 2.

Sound Analysis

The wavelet transform is localized both in the time
and in the frequency domain. This allows us to ana-
lyze natural sounds with great precision (Kronland-
Martinet, Morlet, Grossmann 1987). As an ex-
ample, Figs. 10, 11, 12, and 13 are representations
of complex-valued functions S(b, a) on the open
(b, a) half-plane. The positive b-axis points to the
right and the Log(a)-axis points downward. It is
useful to separately represent the modulus and the
phase of the function $(b, a). Both quantities are
here represented by shades of gray obtained through
appropriate random printing of black dots. The
modulus display is quite similar to a sonogram,
showing the frequency content as a function of time.
In some applications, it is possible to adapt the
analyzing wavelet in order to extract the specific
information. As an example, consider the musical
staff of Fig. 14, and suppose we try to detect all the
octave intervals by analyzing the acoustic signal.
For this purpose, it is convenient to choose an ana-
lyzing wavelet related to the octave interval. We
can use here wavelets that contain, in the frequency
domain, two bumps, spaced an octave apart. Fig-
ure 15 represents the Fourier transform and the real
and imaginary part of one of these wavelets. In this
case, the maximum energy—corresponding to the
larger correlation between the wavelet and the sig-

Kronland-Martinet 15



Fig. 10. Modulus of the Fig. 11. Phase picture cor- Fig. 12. Modulus of the Fig. 13. Phase picture cor-

transform of the first 16 responding to Fig. 10. transform of 16 msec of a responding to Fig. 12.
msec of a clarinet sound. sound signal taken from

The frequency range is 50— an old record. Notice the

8000 Hz. characteristic feature cor-

responding to the scratch.
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Fig. 14. An example of
analyzing wavelet adapted
to octave detection: real
part (a); imaginary part
(b); Fourier transform (c).
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Fig. 15. Modulus of the
wavelet transform of sig-
nal corresponding to the
staff below. The wavelet
used is given in Fig. 14.
Maxima occur when oc-
taves are played.

Fig. 16. Schematic repre-
sentation of synthesis by
summation of wavelets,
corresponding to granular
synthesis.

Fig. 15
g(t) = K. exp(—t2/2) [expliwyt) + exp(2iw,t]]

nal—appears as an increase of darkness when oc-
tave intervals are played (Fig. 14). Notice that in
this case, the wavelet transform representation is
no longer a true time-frequency representation
(sonogram); we analyze the signal in terms of con-
tributions that reveal octaves; it is really a time-
scale representation and not a time-frequency one.

Synthesis of Sounds

The SYTER processor lets us listen to the recon-
structed signals. This enables us to check the acous-
tic relevance of the method. As we have seen, there
are numerous formulas for signal reconstruction.
Equation 6 suggests a granular synthesis technique.
It consists of a summation of all the grains consti-
tuted by the dilated and shifted wavelets with a
complex gain equal to the coefficients S(b, a) ob-
tained in the analysis (Fig. 16).

Equation 17 is easier to implement. It involves
only the values of the wavelet transform at a given

Fig. 16
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Fig. 17. Elementary cell in Fig. 18. The instrument
a quasi-Music V notation used for resynthesis. Each
(Mathews et al. 1969) used  cell is given by Fig. 17.

Fig. 19. The phase picture Fig. 20. Elementary cell
corresponding to the wave-  in Music V notation used
let transform of a single for resynthesis with fre-

for the resynthesis. Phase sine. quency transposition effect
and modulus are given by (ratio = n).
the coefficients of the
wavelet transform.
Fig. 17 Fig. 19
Modulus Phase
Fig. 18 Fig. 20
CELL CELL CELL || """ CELL
; n
"""" Modulus Phase

S(t)

time in order to reconstruct the corresponding
value of the signal.

The discretization of Eq. 7 on a grid defined for
scale parameters a = 2/ (corresponding to an analy-
sis at one voice per octave) can be used for the ana-
lyzing wavelet described next, and gives

s(t) = k, 2427 S(t,a)- a1 (9)

Since S(t, a) = A,(t) - e¥dt), where A (t) and ¢,(t)

represent respectively the modulus and the phase of
the wavelet transform coefficients for a fixed-scale

parameter a, the reconstructed signal can be ob-
tained by

sle) = Ky 5y Ade) - cosleft)) - a2 (10]

This formula is in fact an additive synthesis

18

model of the signal. For each voice, the amplitude
modulation is given by the time function A,(t) and
the phase modulation by ¢,(t). The elementary cell
is represented in Fig. 17, and the final instrument,
obtained by some cells in parallel (typically 10), is
shown in Fig. 18.

Modification of Real Sounds

The wavelet transform can modify signals in inti-
mate ways that can be of interest in particular for
computer music (Risset and Wessel 1982). Numer-
ous modifications can be imagined, for example as
with resynthesis using the phase vocoder (Moorer
1978; Dolson 1986).
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Fig. 21. Elementary cell in This algorithm can per-
Music V notation used for  form multiple transposi-
the resynthesis with fre- tions (for a brightness
quency transposition effect  effect) when { is a sum of
with an integer ratio. (f is Chebyshev polynomials.
a Chebyshev polynomial.)

Modulus

For example, let us look at the effect of transpos-
ing the signal in frequency without acting on its
duration. This problem is difficult and the solution
often depends on the signal itself. Let us take first
the case of a simple signal, x(t) = A -cos(w,t). Then

Slb, a) = K, [ xlt) glt = b/a) dt =

K, §(a wo) exp(ibwy). (11)

Here, the phase coefficient of the wavelet transform
is given by bw, (Fig. 19).

We can transpose the frequency of the original
signal from f to n - f by multiplying the phase bw,
by n. Let x,(t) be the transposed and resynthesized
signal. From Eq. 10 we obtain

x,(t) = k, HZZI A,(t) - cos(nwyt) - a1 (12)

We can approach the transposition effect for any ar-
bitrary signal s(t) by

sa(t) = kg 2 A,(t] - cos(ng,(t]) - a=t2  (13)

The elementary cell corresponding to this algo-
rithm is given in Fig. 20.

Notice that for nn integers, we can use a wave-
shaping module (Arfib 1979) in order to construct
Sa(t). Indeed, let T(x) be the kth order Chebyshev
polynomial that verifies

Tilcos ¢(t)) = cos(k ¢t)). (14)

We can thus multiply by k the phase coefficients,
by using T, as a waveshaping function with a fixed
index equal to 1.

We can generalize this remark and perform a
multiple transposition by using as waveshaping
function a sum of Chebyshev polynomials,

Hx) = > Cy Tilx), (15)
and then construct
S(t) =k, % A,(t) - flcos (,(t)) - a2 (16)

If in Eq. 15 the coefficient ¢, = 1, we obtain a
brightness effect of the original sound.

A schematic diagram of this algorithm is given in
Fig. 21.

We can thus perform a number of sound modi-
fications by altering the wavelet transform coeffi-
cients. Such possibilities include slowing down or
speeding up the sound without pitch transposi-
tions, time-varying filtering, and cross-synthesis be-
tween two sounds by resynthesis with the modulus
information of one sound and the phase informa-
tion of another sound.
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Sound Examples

(These are on a soundsheet included with issue
13[1], Spring 1989.) All the examples were realized
on the SYTER processor. They are obtained auto-
matically and without any a posteriori corrections.

Example 1. Real speech signal; phrase is played
twice.

Example 2. Resynthesis of example 1 without
any transformation.

Example 3. Resynthesis of example 1 with fre-
quency transposition effect (ratio = 3).

Example 4. Resynthesis of example 1 with slow-
down effect (ratio = 3).

Example 5. Resynthesis of example 1 with accel-
eration effect (ratio = 2).

Example 6. Real trombone signal.

Example 7. Wavelet cross-synthesis of examples 1
and 6 (modulus of sound 1 and phase of sound 6).

Example 8. Periodic sound (synthetic).

Example 9. Wavelet cross-synthesis of examples 1
and 8.

Example 10. Flutelike real sound.

Example 11. Resynthesis of example 10 without
any transformation.

Example 12. Partial resynthesis of example 10,
using little dilation parameter voices. This re-
synthesis permits a high-frequency noise
extraction.

Example 13. Partial resynthesis of example 10.
The contributions of the voices used for ex-
ample 12 are eliminated.

Example 14. Real saxophone sound; phrase is
played twice.

Example 15. Resynthesis of example 14 without
any transformation.

Example 16. Resynthesis of example 14 with fre-
quency transposition effect (ratio = 2).

Example 17. Resynthesis of example 14 with
slowdown effect (ratio = 2).

Example 18. Resynthesis of example 14 with
brightness effect. The phase modification is
given by waveshaping. The distortion function
is a sum of the first three Chebyshev
polynomials.

Computer Music Journal



	11.tif
	12.tif
	13.tif
	14.tif
	15.tif
	16.tif
	17.tif
	18.tif
	19.tif
	20.tif

