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This paper starts with a brief discussion of so-called wavelet transforms. 1e;,
decompositions of arbitrary signals into localized contributions labelled by a scale
parameter. The main features of the method are first illustrated through simple
mathematical examples. Then we present the first applications of the method to the
recognition and visualisation of characteristic features of speech and of musical sounds.
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1. INTRODUCTION

The main purpose of the procedures that have been called wavelet transforms is
to decompose arbitrary signals into localized contributions that can be labelled by a
“scale parameier”.

In order to obtain an intuitive understanding of these procedures, it is convenient
to start by a look at the standard methods of smoothing by convolution.

If s(r) is a signal (a real-valued function of the real argument 7). then one can
climinate its small-scale features by taking its convolution with a suitable function.

Consider such a function g; we allow g to be complex-valued but assume g, the
Fourier transform of g, to be real-valued. For consistency with later definitions, we
shall convolve s with the function g* defined as g*()=g(—1), where g is the complex
conjugate of g:

(g* *s)(b)=[g (1=b)s(ndi= fe'" g(w)$(w)dw . (1.1)

T This work was done in the framework of the RCP 820 “Ondelettes” of the CNRS. It was supported by
a contract of the DGA (DCN).
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274 R. KRONLAND-MARTINET, J. MORLET and A. GROSSMANN

Here the notation adopted is:
§(m)=(2n)""* feg(r)dr.

Let g(w) be negligible above a certain frequency @y, i.e., g(w) = 0 if w|>,,... Then
the function (1.1) is insensitive to the Fourier components §(w) with |@]|>Wyax.
This is the elimination of small-scale features. Furthermore, let us assume that gis
negligible outside an interval [fyin,tmax] Of the t-axis; then (1.1) is insensitive to the
values 5(f) such that 1—b lies outside of [fmin>tmax]. This is localization (or better,
concentration) in time.

Under the conditions above, the problem of recovering s(r) from (1.1) is clearly
ill-posed.

We can now describe the main ideas involved in wavelet transforms. One starts
with (1.1), and performs the following three additional steps.

(i) First step: Choose g in such a way that it eliminates not only “small-scale
features” of s (i.e. Fourier components with |w|>wpay) but also “sufficiently
large-scale features of s” (i.e. Fourier components with || <®pmin; of course
0<Wmin<wmax<=). In other words, assume that ¢(w)= 0 if |w|<wp;,. The function
(1.1) depends then only on features of s(r) that are neither too fine nor too gross.
Such a localization in scale can be obtained without excessive sacrifice of
concentration in time.

It is important to realize, however, that this assumption on g runs against the
intuitive idea that (1.1) should be viewed as a local average of the values of s(¢).
Indeed, the absence of zero-frequency components in g entails [g(r)dt=0. If a signal
is essentially constant between f,;, and .., then (1.1) is negligible even if the
constant value of the signal is large, and so (1.1) is nowhere near the mean of s.
Intuitively one should then think of (1.1) as a local average of some derivative of
5(¢). This picture can be made precise for suitable choices of g.

(ii) Second step: Notice that there exists a perfectly natural way of changing the
scale examined by g. Introduce a positive “scale parameter” a. Together with g
consider the whole family of re-scaled functions

8a()=(1//a) g(t/a), (a>0)

(The factor 1//a ensures that flg(r)*dr=flg.(1)["dr).

To any signal 5(r), associate now the function S(b,a) on the open (b,a) half-plane (b
arbitrary, a>0):

S(b,a)=(g.*+s)(b)=1afg((t—b)/a)s()dt=fa[(aw)s(w)e**dw (1.2)

“max/a @y 0
= Va f glaw)§(w)e” “dw = 1/Va f g((t=b)a)s(ndr .
atin o

“"min‘{a

98
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The crucial point is the non-zero lower limit w;,;,/a in one of the integrals (1.2);
this lower limit is there because of (i).

For fixed a, the function (1.2) depends on features of s(¢) given by frequencies in
the range between w,/a and w,,,/a. A small value a=a, of the scale parameter
allows us to look at fine detail of s, but S(b.a,) is then quite insensitive to slow
variations of s.

Furthermore, the value of S(b,a) for a given b depends effectively only on the
values of s(¢) in the interval [b*atyin,b+almay]. If a is small, this interval is short.
(iii) Third step: Realize that the function S(b,a) on the (b,a) half-plane, (which
describes the signal at all scales) has properties that make it a practical tool for the
analysis of s. We list here some of these properties; they will be described in more
detail below.

(a) The total energy of the signal, namely [s(¢)'ds, can also be read off from
S(a,b). Except for a multiplicative constant, independent of s, it is:

[ |S(b.a)l(1/a*)dbda .

(b) The signal s(1) can be reconstructed from S(b,a) by straightforward formulas
and the reconstruction procedure is quite stable, in contrast to reconstruction from
S(b,ap) for fixed ay. Moreover s(f) can be reconstructed from just the values of
S(b,a) at points of a suitable grid of the (b,a) plane.

The function S(b,a) defined by (1.2) is called the wavelet transform of the signal
s(f) with respect to the analyzing wavelet g(t).

Sound signals are a natural domain for the application of wavelet transform
techniques. We present here the first results on wavelet transform analysis of both
computer-generated and natural sounds.

2. BASICS OF WAVELET TRANSFORMS

In this section we shall give a quick review of the main formulas, and illustrate
them by simple examples. For proofs, details, other applications, and different
points of view, see the references.

2.1. Analyzing Wavelets
A function g satisfying the conditions described in the introduction will be called

an analyzing wavelet. More precisely, the minimal requirements for the label
“analyzing wavelet” are”:
Slg(o)dr < e 2.1)

(finite energy), and

[g(w) | daljw] < =, (2.2)
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(if §(w) is smooth, then (2.2) implies the condition ¢(0)=0 of the introduction).

In practice, one often requires more than just (2.1) and (2.2): some smoothness
of g and ¢, and simultaneous concentration of g and g, not too far from the limit
imposed by the uncertainty principle.

A plane wave is not an analyzing wavelet. It extends to infinity and oscillates too
much. A strictly positive function g(r), e.g. a bump, cannot be an analyzing wavelet
either since it cannot satisfy the condition [ g(¢)dr=0.

In this paper, we shall explicitly make the following additional assumption:

g(¢) coritains only positive-frequency components i.e.,
g(w)=0 for w<0, (2.3)

It follows from (2.3) that the real and imaginery parts of g(r) are Hilbert
transforms of each other.

All the numerical examples shown in this paper were computed with analyzing
wavelets that have Fourier transform of the form:

g(w)=const.exp(—(w—ey)*/2) + small corrections (2.4)
(gaussian bump centered at ay).

The correction terms are theoretically necessary since exp(— (w—w,)/2) does not
vanish for w= 0, and so does not satisfy (2.2) and (2.3). The choice of wj, in this
paper (between 5.0 and 6.0) makes however such correction terms negligible, and
we shall not bother to write them down. Consequently, up to a constant
normalization factor and negligible correction terms, our analyzing wavelet is the
modulated gaussian

g(;):t’“"".exp( —112),

[ts real part, imaginary part and modulus are shown in Figs. la-c for various

values of the scale parameter.

2.2, Definition and Main Properties of the Wavelet Transform

If g satisfies the conditions of Sect. 2.1 and if s(¢) is an arbitrary (continuous-time,
real-valued, deterministic) signal, then the wavelet transform of s with respect to g
is defined as the following function S(b.a)=5,(b.a) on the open (b,a) half-plane (b
arbitrary, a>0):

S(b.a)=(1/,a) fg—((t—b)la)s(1)dt= V}fo glaw)s(w)e' "dew. (2.5)

[t is the scalar product of s with the function ¢"“(r) obtained from g(r) by
re-scaling by a, and shifting by b.
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Fig. 1. An analyzing wavelet at various values of the scale parameter (a) real part, (b) imaginary part

and (¢) modulus and real part,

The main properties of the correspondence between s and S are:

a) Independence of choice of origin of time

If s(1) is shifted in time by ¢, (s(t) — s(t—1,)), then S(a.b) is transformed into

S(b‘—ff;‘ﬁ'}.
b) Conservation of energy
It is convenient to introduce the positive number

€ = 2;7[ (Hw)g(w) dw .
(1]
which is finite by (2.2).

Let 5(r) be a signal of finite energy: [s(¢)°’dt<oe; then

Js(eyde=(1/c,) [11S(b,a)*1/a*da db .

101
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At this point it is useful to point out an apparent paradox: Consider a sequence
54(1) of signals of finite energy which tend to a function that is constant: s(f) =
const. # 0. Then the energies on the L.h.s. of (2.7) tend to +%. On the other hand,
the wavelet transform of the function s(f) = const. is identically zero, since [g(r)dr
= 0: 50 we obtain +% = (. We invite the reader to improve his understanding of
the transform (2.5) by resolving this paradox.

c) Sampling of the transform by reproducing kernel

The sampling (evaluation) of an arbitrary continuous function of one or more
variables is commonly written as the scalar product of this function with an
appropriate d-function of Dirac. If the function to be evaluated is not arbitrary,
then it may happen that its evaluation at an arbitrary point can be obained by scalar
products not only with a §-function but also with another, smoother, function. A
good example for this is provided by band-limited functions. A point evaluation of
such a function can be obtained either with the help of a d-function or with the help
of an appropriate sinc-function.

Let g, the analyzing wavelet, be fixed. Then every (reasonable) signal s(r) gives
rise by (2.5) to a function on the open (b,a)-half-plane, but an arbitrary function on
this half-plane is not, in general, the transform of some s. Being “somebody’s
transform” imposes constraints which are practically important. They can be
described as follows:

Given g, consider on the (b,a)-half-plane the function

p(b,a)=(1/c,)(1/\a)[g(t—b)la)g(r)dr (2.8)

where c, is defined by (2.6).

Then a function S(b.a) is the wavelet transform (with respect to g) of some signal
s, if and only if it satisfies, for every point by.a, in the (b,a) half-plane. the
condition

S(bo.ao)=[fp((bo—b)/a,ay/a)S(b.a)(1/a*)dadb. (2.9)

This is an evaluation by reproducing kernel, of the type described above. The
kernel p in (2.9) is significantly different from zero only if the point (b,a) is in a
suitable neighbourhood of (by,a,). For the wavelet (2.4), the modulus of the
function ¢ p(b,a) is

(2r)"*(a/(a*+ 1)) “exp{ —(112)[b*+w,'(a—1))/(a'+1))}.
The phase is
boy(a+1)/(a*+1).
So (2.9) describes correlations between values of S at a scale given by p. Because

of these correlations, S(a,b) is entirely determined by its values on suitable grid of
the (b,a) half-plane. The qualitative features of such a grid can be seen in Fig. 2.
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Fig. 2. Schematic representation of a grid on the (b.a) plane, allowing arbitrarily precise reconstruction
of signals.

2.3. Reconstruction Formulas
A signal s can be recovered from its transform S with the help of the formula

s(t)=(1/c) f[f(1/Ja)g((t—b)/a)S(b,a)(1/a*)da db. (2.10)

There are many other exact reconstruction formulas, some involving the values
of § on a vertical line b=const. and others involving only the values of S on a
suitable grid. The discussion of these formulas would take us too far from the main
subject of this paper, which is the use of § as a “generalized sonogram™. We refer,
again, to the literature quoted in the references.

2.4. Detection of Discontinuities in the Signal or in Its Derivatives

Abrupt changes in s or in its derivatives can under suitable circumstances be
clearly seen on its transform S(a,b). This is a point with important implications, and
will be illustrated in the pictures below. The main qualitative features are:

1) A discontinuity is signaled by a localized increase in the modulus |S(a,b)| for
small @, around a point b, (a discontinuity contains high frequencies).

2) A discontinuity is also signaled by the convergence of lines of constant phase
towards a point at the edge of the (b,a) half-plane. In order to get an intuitive
feeling for this, consider first the case where s(f)=04(f) (Dirac’s function
concentrated at r=0). Then, by (1.1), S(b.a)=(1//a) g(—b/a). Since a is real, the
phase of S(b,a) is constant along the straight lines b/a=const., coverging towards
the point b=0, a=0, on the edge of the open (b,a) half-plane. One should realize
next that this result depends only on the fact that &(r) is homogeneous,
(6(A)=A '6(r) for A=>0) and that it remains true for any s(r) that satisfies a
homogeneity condition of the form s(At)=A"s(r), which implies, in (2.5), that
flam)=a "'§(w),a>0, 6 real. An example of such a function is an s(f) which
vanishes for r=<0 and which is equal to ¢ fot r>0. Now, locally, (i.e. in a
neighbourhood of =0) this is precisely the behaviour of a function that has a
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discontinuous derivative. In any true signal, this behaviour will be only
approximate, and around certain points; the choice of =0 in the above examples is
of no special significance, by the independence of the choice of origin of time,
discussed in Sect. 2.2.

These statements apply equally well to s and to its derivatives. The wavelet
transform (with respect to g) of a derivative s is a times the wavelet transform of s
with respect to g.

3. IMPLEMENTATION OF WAVELET ANALYSIS OF SOUNDS

The methods described above has been implemented in a real-time signal
processor SYTER (Fig. 3).

g' PDP /\A\
Fer,iie graphic ADC] DA
controls ' display DISK
| signal @
- processor
SYTER
CONTROLS SIGNAL PROCESSING

Fig. 3. Schematic description of the SYTER processor,

The system consists of a control part and of a part for real-time signal analysis.
The controls consists of a set of I/O peripherals and of a PDP 11/73 host processor.
The real-time part includes the SYTER processor, the A/D and D/A converters
and the mass storage system.

The above components are connected by a bus.

The system—fully programmable and interactive—has been used to calculate
wavelet transforms of signals, as follows:

First of all, the signal to be analyzed is sampled at a sampling rate of 32 kHz and
stored on disk.

Next, for every chosen value of the scale parameter, (i.e. for each “voice™), the
host processor calculates the sampled values g,(n) of the analyzing wavelet, and
transmits them to the real-time signal processor.
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This processor performs then the transform in real time, for each voice, and
stores the result on a disk.

The processing of the results is then performed by the host processor. The
graphic representations are then available at a graphic terminal.

The structure used in the processing of the signal is of transverse filter type. The
convolution described above is

N

X(n) =2 gsn —i—1)

=M

where X(n) is the n-th output sample, g; the i-th value of the filter response (here
the wavelet) and s(n) the n-th sample of the input signal.

Such a structure requires N memory locations for data. For each output number,
one has to perform N multiplications and N—1 additions (Fig. 4).

T T T Eeomoe e 0 e T

x(n)

30‘7 B ' 83 gp x

.
-
-

N-1

Yn =2 gx(n—i—1)

=[]

Fig. 4. Structure of the filter used for transformation.

Note that the SYTER systems allows the reconstruction of signals from their
transform, and the listening to this reconstruction. This enables us to check the
acoustic relevance of various approximations.

The availability of reconstruction formulas enables us to subject the signal—
while transformed—to intimate modifications that are of interest in many fields,
and in particular in the composing of electronic music.
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4, DISCUSSION OF SELECTED EXAMPLES

This section contains comments of pictures on wavelet transforms of a variety of
signals, ranging from &-functions to speech and to notes on a clarinet. The more
academic examples (calculated on the system described above and on an IBM
PC-compatible microcomputer) can be usefully compared to their real-life
counterparts.

4.1. Description of Graphic Conventions

The pictures below are representations of complex-valued functions §(b.a) on
the open (b,a) half-plane.

The positive b-axis points to the right and the a-axis points downward so that
high frequencies (small a) are above low frequencies.

It is useful to represent separately the modulus and the phase of the
complex-valued function S(b,a) to be described. Both quantities are represented by
shades of gray obtained through appropriate random printing of black dots.
Furthermore, some phase pictures are cut off when the modulus is smaller than a
prescribed number, and so provide also some information about the modulus.

4.2. o-functions, Pure Harmonic Signals and Reproducing Kernels

A d-function positioned at (=t; gives rise to the transform
S(b.a) =a " g((tp—b)/a) (4.1)
while the harmonic signal cos(wgt) has transform
S(b,a) = (1/12)a"*g(wya) exp(iwyb). (4.2)

Linear combinations of such functions show the expected interference effects.
Figures 5a and Sb show the modulus and phase of the transform of a o-function.

Notice the convergence of the straight lines of constant phase for the d-function.
This should be contrasted with the lines of constant phase of the reproducing kernel
(Fig. 6¢) which become parallel for small values of a.

The phase of the wavelet transform of a single-frequency signal shows the
expected regular behaviour (Fig. 7).

It is quite instructive to look at the phase picture of the transform of a signal that
is the sum of two harmonics; we choose the frequency ratio 1/1.6 (Fig. 8). The
points where new lines arise are necessarily zeroes of the modulus; they correspond
to destructive interference of terms in (4.2).

The constructive and destructive interference between transforms of two
o-functions is shown in Figs. 9a and 9b. The moth-eaten appearance of 9b is again
due to the presence of zeroes of the modulus.

Finally Figs. 10 describe the transform (with cutoff on the modulus) of two
weighted O-functions together with two weighted cosines.
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Figs. 6. Reproducing kernel: modulus (a) and phase: (b). (c).
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Fig. 7. Phase of the transform of a single-frequency signal. The corresponding modulus is constant on
lines of constant a,

Fig. 8a. Modulus of the transform of a two-frequency signal. The ratio of the frequency is 1.6. One sees
the destructive interferences (with holes) that also appear on the phase picture 8b.

Fig. 8b. Phase of the transform of the two-frequency signal of Fig. 8a, with cutoff on the modulus.
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Fig. 9b. Phase of the transform of Fig. 9a. with cutoff on the modulus.
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Fig. 10a. Modulus of the transform of the sum of two weighted 6-functions (ratio of weights 1:2) and of
two weighted cosines (frequency ratio 1:1.6., ratio of weights 1:2).

QI

-
-

=

——
A Yy
=
e

,.
2.
o

3
g T

Fig. 10b. Phase of Fig. 104, with cutoff on modulus.
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The pictures to be shown from now on were calculated on the SYTER. From
now on, we shall use the logarithmic scale on the g-axis, and write the phase
pictures without cutoff on the modulus. The signal will appear above the transform,
except in Fig. 11a.

OFH OF FILE GLI

15 UBTEES AT from 6 S000Hz MINDONE 1.

Fig. 11a. Modulus of the transform of three lincar frequency sweeps, The total time is 1.28 seconds,
Because of the proportionality of frequeney to (1/a) and of the logarithmic scale in the e-direction. the
lines of maximum modulus are curved.
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4.2. A Chirp

Figures 11a to 1lc represent the modulus of the transform of a sawtooth sweep
over frequencies. The picture 11a corresponds to a total time of 1.28 seconds. The
very sharp transition between frequencies can be seen in Figs. 11b and 11¢ which
also shows the beginning of the rise in frequency.

The phase picture (Fig. 11c) is quite instructive. It shows the phase convergence,
discussed previously, at the transition point.

ELET TRANCFORM OF FILE BLT i e
‘lt‘,E,ITF 15 UOICES OCT Tr MiHze 1y 2000Hz - UTHO0NE S Lems

Fig. 11b. Zoom of Fig. 11a to a total time of 16 ms. showing one of the transitions.
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Fig. llc. Phase picture corresponding to Fig, 11b and showing convergence of lines of constant phase
toward the transition point.

4.3. Speech

We now leave computer-generated signals. Figure 12a is a modulus picture, over
0.16 seconds, of “pap™ in “papy™. The position of the maximum of the analyzing
wavelet in frequency space ranges from 50 Hz (bottom of picture) to 8000 Hz (top
of picture). The explosion of the “p™, over 32ms. is shown in Fig. 12b (modulus).
again between 50 and 8000 Hz. The same picture, in phase, (Fig. 12¢) shows
convergence of phase lines at the beginning of sound.

For the sake of comparison, Figs. 13a and 13b show the “ta” sound of “taty™,
during 0.128 seconds and the first 32 ms (modulus).
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Fig. 12a. Modulus of the transform of “PAP”™. One can see. at low frequencies, the two explosions of
“P" sound: the vowel “A", between the two “P"s, shows its resonant frequencies.
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Fig. 12Zb. Modulus of the transform of the beginning of the first “P" of Fig. 12a, over 32 ms; with scule
parameter corresponding to the range between 50 and 8000 Hz.
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Fig. 12c. The same as Fig. 12b, in phase. The upper limit is now 2000 Hz. The points where new lines of
constant phase originate correspond to zeroes of the modulus (compare, e.g., Figs. 8).
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FILE R

- e e

e e e
aime

M

Fig. 13a. Modulus of transform of “TA™ of “TATY" during 0.128 seconds, between 300 and 8000 Hz.
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4.4. Notes on a Clarinet

Figures 14a to 14e represent sounds on a clarinet.

In Fig. 14a one sees (in modulus) the start of a high A. The duration of the
picture is (.128 seconds; the frequency range covered is 430 to 8000 Hz. The
different harmonics are well-separated. The attack is shown, in the same frequency
range, in Fig. 14b, which covers 16 ms. The phase picture (Fig. 14¢) over 32 ms,
shows gentle phase convergence.

The transition between a B and a C sound is shown in Fig. 14d (modulus) and 14e
(phase), over 30 ms. One sees in Fig. 14d, both on the signal and on the transform.
that C has more energy. |

Fig. 14a. The modulus of the transform of the high A on a clarinet, during 0. 128 sceonds, between 430
and 8000 Hz.
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Fig. 14b. The first 16 ms of Fig. 14a.

121



298 R. KRONLAND-MARTINET.J. MORLET and A. GROSSMANN

WAVELET: TRANSFDORN nF B CLARTNET L oy e
PHAS! : rrom H20Hz 1o 2000Hz - HIHOOL

Fig. 14c. Phase picture corresponding to the 32 ms of Fig. 14a.
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Fig. 14d. Modulus of a legato transition between high B and high C. during 32 ms, between 430 and
8000 Hz,
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Fig. I4e. The transition of Fig. 14d. in phase picture. The transition. not entirely evident on the signal,
can be pinpointed on the phase picture.
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5. CONCLUSIONS

On the basis of our experience until now, we believe that various implementa-
tions of the method of wavelet transforms will find a place in a wide range of
applications involving signal processing and pattern recognition. In the near future.
we intend to describe the utilisation of these methods to problems of synthesis and
modification of sounds. One of us (R.K.) has recently obtained very promising
results in the old problem of sound transposition without change in duration.
Concerning speech. the preliminary results shown in this paper encourage us to
believe that the combined information on modulus and on phase of wavelet
transforms is useful in the segmentation of speech sounds. The methods described
here can be generalized to signals in more than one dimension. S. Mallat and Y.
Meyer have informed us on applications on the processing of images.
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